opencv-python常用函数封装打包

简介:有些IDE直接输入opencv的函数就会给你显示参数列表,但是有些不能或者不方便,在这种情况下我一般是去官网查,但是这种也不方便,而且是外网打开速度也慢,效率不高。这里把opencv的一些基本的图像处理操作更进一步封装,添加一些常用的默认参数,达到一种更加开箱即用的效果,在算法预研阶段能更快的出结果。

1. 效果:

哆啦A梦.png

2.代码

import cv2 as cv
import numpy as np

class cvtool:
    def showImage(self,img, name="img", waitkeyMode=1, destroyMode=0, windowSizeMode=0):
        if img is None:
            print("In function showImage: the input image is None!")
            return
        cv.namedWindow(name,windowSizeMode)
        cv.imshow(name,img)
        cv.waitKey(waitkeyMode)
        if windowSizeMode != 0:
            cv.destroyWindow(name)

    def bgr2gray(self, colorImage):
        if colorImage.shape[-1] !=3:
            print("In function bgr2gray(): the input image's shape is:{}".format(colorImage.shape))
            return None
        grayImage = cv.cvtColor(colorImage,cv.COLOR_BGR2GRAY)
        return grayImage

    def canny(self, img, th1=80, th2=180):
        canny = cv.Canny(img,th1,th2)
        return canny

    def sobelx(self, img, ksize=3):
        sobelx = cv.Sobel(img,cv.CV_16SC1,1,0,ksize=ksize)
        return cv.convertScaleAbs(sobelx)

    def sobely(self, img, ksize=3):
        sobely = cv.Sobel(img,cv.CV_16SC1,0,1,ksize=ksize)
        return cv.convertScaleAbs(sobely)

    def sobelxy(self, img, ksize=3):
        sobelx = self.sobelx(img,ksize)
        sobely = self.sobely(img,ksize)
        return cv.addWeighted(sobelx,0.5,sobely,0.5,1)

    def gaussianBlur(self, img, ksize=3, sigmax=1, sigmay=1):
        return cv.GaussianBlur(img,(ksize,ksize),sigmax, sigmay)

    def medianBlur(self, img, ksize=3):
        return cv.medianBlur(img,ksize)

    def averageBlur(self, img, ksize=3):
        return cv.blur(img,(ksize,ksize))

    # enum
    # cv::MorphShapes
    # {
    #     cv:: MORPH_RECT = 0,
    #     cv::MORPH_CROSS = 1,
    #     cv::MORPH_ELLIPSE = 2
    # }
    def erode(self, img, ksize=3, morphShape=2):
        return cv.erode(img, (ksize,ksize),2)

    def dilate(self, img, ksize=3, morphShape=2):
        return cv.dilate(img, (ksize, ksize),2)

    # enum
    # cv::MorphTypes
    # {
    #     cv::MORPH_ERODE = 0,
    #     cv::MORPH_DILATE = 1,
    #     cv::MORPH_OPEN = 2,
    #     cv::MORPH_CLOSE = 3,
    #     cv::MORPH_GRADIENT = 4,
    #     cv::MORPH_TOPHAT = 5,
    #     cv::MORPH_BLACKHAT = 6,
    #     cv::MORPH_HITMISS = 7
    # }
    def open(self, img, ksize=3, morphType=2, morphShape=2):
        return cv.morphologyEx(img,morphType,(ksize,ksize))

    def close(self, img, ksize=3, morphType=3, morphShape=2):
        return cv.morphologyEx(img,morphType,(ksize,ksize),morphShape)

    def gradient(self, img, ksize=3, morphShape=2):
        return cv.morphologyEx(img,cv.MORPH_GRADIENT,(ksize,ksize), morphShape)

    # enum
    # cv::ThresholdTypes
    # {
    #     cv:: THRESH_BINARY = 0,
    #     cv::THRESH_BINARY_INV = 1,
    #     cv::THRESH_TRUNC = 2,
    #     cv::THRESH_TOZERO = 3,
    #     cv::THRESH_TOZERO_INV = 4,
    #     cv::THRESH_MASK = 7,
    #     cv::THRESH_OTSU = 8,
    #     cv::THRESH_TRIANGLE = 16
    # }
    def threshold(self, img, th=120, maxVal=255, thresholdType=3):
        _,threshold = cv.threshold(img, th, 255,thresholdType)
        return threshold

    def otsu(self, img, thresholdType=cv.THRESH_TOZERO):
        if img.shape[-1] != 1:
            img = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
        _, otsu = cv.threshold(img, 0, 255, thresholdType+cv.THRESH_OTSU)
        return otsu

    # enum cv::AdaptiveThresholdTypes
    # {
    #     cv:: ADAPTIVE_THRESH_MEAN_C = 0,
    #     cv::ADAPTIVE_THRESH_GAUSSIAN_C = 1
    # }
    def adaptiveThreshold(self, img, adaptiveThresholdType=cv.ADAPTIVE_THRESH_MEAN_C,
                          thresholdType = 0,ksize=11,diff=5):
        if img.shape[-1] != 1:
            img = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
        if ksize % 2 == 0:
            ksize += 1
        return cv.adaptiveThreshold(img, 255, adaptiveThresholdType,thresholdType , ksize, diff)

    def gamma(self,img,gamma=0.8):
        if img is None:
            print("in gamma: the image is None!")
            return img
        table = []
        for i in range(256):
            table.append(((i / 255.0) ** gamma) * 255)
        table = np.array(table).astype("uint8")
        dst = cv.LUT(img, table)
        return dst


if __name__ == "__main__":
    imgPath = "K:\\Ameng.png"
    img = cv.imread(imgPath)

    pro = cvtool()
    pro.showImage(img,"img",0)

    gray = pro.bgr2gray(img)
    pro.showImage(gray,"gray",0)

    canny = pro.canny(img)
    pro.showImage(canny,"canny",0)

    sobelx = pro.sobelx(img)
    pro.showImage(sobelx,"sobelx",0)

    sobely = pro.sobely(img)
    pro.showImage(sobely, "sobely", 0)

    sobelxy = pro.sobelxy(img)
    pro.showImage(sobelxy, "sobelxy", 0)

    gauss = pro.gaussianBlur(img,9)
    pro.showImage(gauss, " gauss", 0)

    median = pro.medianBlur(img,5)
    pro.showImage(median, "median")

    average = pro.averageBlur(img,7)
    pro.showImage(average, "average", 0)

    erode = pro.erode(img,9)
    pro.showImage(erode,"erode",0)

    dilate = pro.dilate(img,9)
    pro.showImage(dilate, "dilate", 0)

    open = pro.open(img,11)
    pro.showImage(open, "open", 0)

    close = pro.close(img, 11)
    pro.showImage(close, "close", 0)

    gradient = pro.gradient(img,5)
    pro.showImage(gradient, "gradient", 0)

    threshold = pro.threshold(img,200)
    pro.showImage(threshold, "threshold",0)

    otsu = pro.otsu(img)
    pro.showImage(otsu, "otsu", 0)

    adaptiveThreshold = pro.adaptiveThreshold(img,0,0)
    pro.showImage(adaptiveThreshold, "adaptiveThreshold", 0)

    gamma =pro.gamma(img,1.5)
    pro.showImage(gamma,"gamma",0)


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容