iOS底层原理04:内存对齐原理

在探讨内存对齐原理之前,首先介绍下iOS中获取内存大小的三种方式

获取内存大小的三种方式

获取内存大小的三种方式分别是:

  • sizeof
  • class_getInstanceSize
  • malloc_size

sizeof

  • 1、sizeof是一个操作符,不是函数
  • 2、我们一般用sizeof计算内存大小时,传入的主要对象是数据类型,这个在编译器的编译阶段(即编译时)就会确定大小而不是在运行时确定。
  • 3、sizeof最终得到的结果是该数据类型占用空间的大小

class_getInstanceSize

这个方法在iOS底层原理02:alloc & init & new 源码分析分析时就已经分析了,是runtime提供的api,用于获取类的实例对象所占用的内存大小,并返回具体的字节数,其本质就是获取实例对象中成员变量的内存大小

malloc_size

这个函数是获取系统实际分配的内存大小

可以通过下面代码的输出结果来验证我们上面的说法

#import <Foundation/Foundation.h>
#import <objc/runtime.h>
#import <malloc/malloc.h>

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        
        NSObject *obj = [[NSObject alloc] init];
        NSLog(@"obj对象类型占用的内存大小: %lu", sizeof([NSObject class]));
        NSLog(@"obj对象实际占用的内存大小: %lu", class_getInstanceSize(obj.class));
        NSLog(@"obj对象世纪分配的内存大小: %lu", malloc_size((__bridge const void *)(obj)));
    }
    return 0;
}

以下是打印结果


image

总结

  • sizeof:计算类型占用的内存大小,其中可以放 基本数据类型、对象、指针

    • 对于类似于int这样的基本数据而言,sizeof获取的就是数据类型占用的内存大小,不同的数据类型所占用的内存大小是不一样的
    • 而对于类似于NSObject定义的实例对象而言,其对象类型的本质就是一个结构体(即 struct objc_object)的指针,所以sizeof(obj)打印的是对象obj的指针大小,我们知道一个指针的内存大小是8,所以sizeof(objc) 打印是 8。注意:这里的8字节与isa指针一点关系都没有!!!)
    • 对于指针而言,sizeof打印的就是8,因为一个指针的内存大小是8
  • class_getInstanceSize:计算对象实际占用的内存大小,这个需要依据类的属性而变化,如果自定义类没有自定义属性,仅仅只是继承自NSObject,则类的实例对象实际占用的内存大小是8,可以简单理解为8字节对齐

  • malloc_size:计算对象实际分配的内存大小,这个是由系统完成的,可以从上面的打印结果看出,实际分配的和实际占用的内存大小并不相等,这个问题可以通过iOS底层原理02:alloc & init & new 源码分析中的16字节对齐算法来解释这个问题

结构体内存对齐

首先定义两个结构体,分别计算他们的内存大小

//1、定义两个结构体
struct Mystruct1{
    char a;     //1字节
    double b;   //8字节
    int c;      //4字节
    short d;    //2字节
}Mystruct1;

struct Mystruct2{
    double b;   //8字节
    int c;      //4字节
    short d;    //2字节
    char a;     //1字节
}Mystruct2;

//计算 结构体占用的内存大小
NSLog(@"%lu-%lu",sizeof(Mystruct1),sizeof(Mystruct2));

打印结果如下:


image

从打印结果我们可以看出一个问题,两个结构体乍一看,没什么区别,其中定义的变量 和 变量类型都是一致的,唯一的区别只是在于定义变量的顺序不一致,那为什么他们所占用的内存大小不相等呢?其实这就是iOS中的内存字节对齐现象

内存对齐规则

每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。程序员可以通过预编译命令#pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。在ios中,Xcode默认为#pragma pack(8),即8字节对齐

可以将内存对齐原则可以理解为以下两点:

  • 【原则一】 数据成员的对齐规则可以理解为min(m, n)的公式, 其中 m表示当前成员的开始位置, n表示当前成员所需要的位数。如果满足条件 m 整除 n (即 m % n == 0), n 从 m 位置开始存储, 反之继续检查 m+1 能否整除 n, 直到可以整除, 从而就确定了当前成员的开始位置。
  • 【原则二】数据成员为结构体:当结构体嵌套了结构体时,结构体成员要从其内部最大成员大小的整数倍开始存储,比如结构体a嵌套结构体b,b中有char、int、double等,则b的自身长度为8
  • 【原则三】最后结构体的内存大小必须是结构体中最大成员内存大小的整数倍,不足的需要补齐。

验证对齐规则

下表是各种数据类型在ios中的占用内存大小,根据对应类型来计算结构体中内存大小


image

我们可以通过下图图来说明下为什么两个结构体MyStruct1 & MyStruct2的内存大小打印不一致的情况,如图所示

image

结构体MyStruct1 内存大小计算

根据内存对齐规则计算MyStruct1的内存大小,详解过程如下:

  • 变量a:占1个字节,从0开始,此时min(0,1),即 0 存储 a
  • 变量b:占8个字节,从1开始,此时min(1,8),1不能整除8,继续往后移动,直到min(8,8),从8开始,即 8-15 存储 b
  • 变量c:占4个字节,从16开始,此时min(16,4),16可以整除4,即 16-19 存储 c
  • 变量d:占2个字节,从20开始,此时min(20, 2),20可以整除2,即20-21 存储 d

因此MyStruct1的需要的内存大小为 22字节,而MyStruct1最大变量的字节数为8,所以 MyStruct1 实际的内存大小必须是 8 的整数倍,22向上取整到24,主要是因为24是8的整数倍,所以 sizeof(MyStruct1) 的结果是 24

结构体MyStruct2 内存大小计算

根据内存对齐规则计算MyStruct2的内存大小,详解过程如下:

  • 变量b:占8个字节,从0开始,此时min(0,8),即 0-7 存储 b
  • 变量c:占4个字节,从8开始,此时min(8,4),8可以整除4,即 8-11 存储 c
  • 变量d:占2个字节,从12开始,此时min(12, 2),12可以整除2,即12-13 存储 d
  • 变量a:占1个字节,从14开始,此时min(14,1),即 14 存储 a

因此MyStruct2的需要的内存大小为 15字节,而MyStruct1最大变量的字节数为8,所以 MyStruct2 实际的内存大小必须是 8 的整数倍,15向上取整到16,主要是因为16是8的整数倍,所以 sizeof(MyStruct2) 的结果是 16

结构体嵌套结构体

上面的两个结构体只是简单的定义数据成员,下面来一个比较复杂的,结构体中嵌套结构体的内存大小计算情况

  • 首先定义一个结构体MyStruct3,在MyStruct3中嵌套MyStruct2,如下所示
//1、结构体嵌套结构体
struct Mystruct3{
    double b;   //8字节
    int c;      //4字节
    short d;    //2字节
    char a;     //1字节
    struct Mystruct2 str; 
}Mystruct3;

//2、打印 Mystruct3 的内存大小
NSLog(@"Mystruct3内存大小:%lu", sizeof(Mystruct3));
NSLog(@"Mystruct3中结构体成员内存大小:%lu", sizeof(Mystruct3.str));

打印 的结果如下所示


image

根据内存对齐规则,来一步一步分析Mystruct3内存大小的计算过程

  • 分析Mystruct3的内存计算
    • 变量b:占8个字节,从0开始,此时min(0,8),即 0-7 存储 b
    • 变量c:占4个字节,从8开始,此时min(8,4),8可以整除4,即 8-11 存储 c
    • 变量d:占2个字节,从12开始,此时min(12, 2),20可以整除2,即12-13 存储 d
    • 变量a:占1个字节,从14开始,此时min(14,1),即 14 存储 a
    • 结构体成员str:str是一个结构体,根据内存对齐原则二结构体成员要从其内部最大成员大小的整数倍开始存储,而MyStruct2最大的成员大小为8,所以str要从8的整数倍开始,当前是从15开始,所以不符合要求,需要往后移动到16,16是8的整数倍,符合内存对齐原则,所以 16-31 存储 str

因此MyStruct3的需要的内存大小为 32字节,而MyStruct3中最大变量为str, 其最大成员内存字节数为8,根据内存对齐原则,所以 MyStruct3 实际的内存大小必须是 8 的整数倍,32正好是8的整数倍,所以 sizeof(MyStruct3) 的结果是 32

其内存存储情况如下图所示


image

内存优化(属性重排)

MyStruct1 通过内存字节对齐原则,增加了9个字节,而MyStruct2通过内存字节对齐原则,通过4+2+1的组合,只需要补齐一个字节即可满足字节对齐规则,这里得出一个结论结构体内存大小与结构体成员内存大小的顺序有关

  • 如果是结构体中数据成员是根据内存从小到大的顺序定义的,根据内存对齐规则来计算结构体内存大小,需要增加有较大的内存padding即内存占位符,才能满足内存对齐规则,比较浪费内存
  • 如果是结构体中数据成员是根据内存从大到小的顺序定义的,根据内存对齐规则来计算结构体内存大小,我们只需要补齐少量内存padding即可满足内存对齐规则,这种方式就是苹果中采用的,利用空间换时间,将类中的属性进行重排,来达到优化内存的目的

以下面这个例子来进行说明 苹果中属性重排,即内存优化

  • 定义一个自定义HTPerson类,并定义几个属性
@interface HTPerson : NSObject

@property (nonatomic, copy) NSString *name;
@property (nonatomic, copy) NSString *nickName;
// @property (nonatomic, copy) NSString *hobby;
@property (nonatomic, assign) int age;
@property (nonatomic, assign) long height;

@property (nonatomic) char c1;
@property (nonatomic) char c2;

@end
  • main中创建HTPerson的实例对象,并对其中的几个属性赋值
int main(int argc, char * argv[]) {
    @autoreleasepool {
        HTPerson *person = [HTPerson alloc];
        person.name = @"name";
        person.nickName = @"nickName";
        person.age = 18;
        person.c1 = 'a';
        person.c2 = 'b';
        
        NSLog(@"%@", person);
    }
    return 0;
}
  • 断点调试person,根据HTPerson对象地址,查找出属性的值

    • 通过地址找出 name & nickName
    image
    • 当我们向通过0x0000001200006261地址找出age等数据时,发现是乱码,这里无法找出值的原因是苹果中针对age、c1、c2属性的内存进行了重排,因为age类型占4个字节,c1和c2类型char分别占1个字节,通过4+1+1的方式,按照8字节对齐,不足补齐的方式存储在同一块内存中,

      • age的读取通过0x00000012
      • c1的读取通过0x61(a的ASCII码是97)
      • c2的读取通过0x62(b的ASCII码是98)
      image

所以,这里可以总结下苹果中的内存对齐思想:

  • 大部分的内存都是通过固定的内存块进行读取
  • 尽管我们在内存中采用了内存对齐的方式,但并不是所有的内存都可以进行浪费的,苹果会自动对属性进行重排,以此来优化内存

内存对齐算法

字节对齐到底采用多少字节对齐?通过objc4中class_getInstanceSize的源码来进行分析

/** 
 * Returns the size of instances of a class.
 * 
 * @param cls A class object.
 * 
 * @return The size in bytes of instances of the class \e cls, or \c 0 if \e cls is \c Nil.
 */
OBJC_EXPORT size_t
class_getInstanceSize(Class _Nullable cls) 
    OBJC_AVAILABLE(10.5, 2.0, 9.0, 1.0, 2.0);

⬇️

size_t class_getInstanceSize(Class cls)
{
    if (!cls) return 0;
    return cls->alignedInstanceSize();
}

⬇️

// Class's ivar size rounded up to a pointer-size boundary.
uint32_t alignedInstanceSize() const {
    return word_align(unalignedInstanceSize());
}

⬇️

static inline uint32_t word_align(uint32_t x) {
    //x+7 & (~7) --> 8字节对齐
    return (x + WORD_MASK) & ~WORD_MASK;
}


//其中 WORD_MASK 为
#   define WORD_MASK 7UL

通过源码可知:

  • 对于一个对象来说,其真正的对齐方式8字节对齐,8字节对齐已经足够满足对象的需求了
  • apple系统为了防止一切的容错,采用的是16字节对齐的内存,主要是因为采用8字节对齐时,两个对象的内存会紧挨着,显得比较紧凑,而16字节比较宽松,利于苹果以后的扩展。

【总结】
综合前文提及的获取内存大小的方式

  • class_getInstanceSize:是采用8字节对齐,参照的对象的属性内存大小
  • malloc_size:采用16字节对齐,参照的整个对象的内存大小,对象实际分配的内存大小必须是16的整数倍

内存对齐算法

目前已知的16字节内存对齐算法有两种

  • alloc源码分析中的align16
  • malloc源码分析中的segregated_size_to_fit

align16: 16字节对齐算法

这个算法的思想已经在iOS底层原理02:alloc & init & new 源码分析中有所提及

static inline size_t align16(size_t x) {
    return (x + size_t(15)) & ~size_t(15);
}

segregated_size_to_fit: 16字节对齐算法

#define SHIFT_NANO_QUANTUM      4
#define NANO_REGIME_QUANTA_SIZE (1 << SHIFT_NANO_QUANTUM)   // 16

static MALLOC_INLINE size_t
segregated_size_to_fit(nanozone_t *nanozone, size_t size, size_t *pKey)
{
    size_t k, slot_bytes;

    if (0 == size) {
        size = NANO_REGIME_QUANTA_SIZE; // Historical behavior
    }
    k = (size + NANO_REGIME_QUANTA_SIZE - 1) >> SHIFT_NANO_QUANTUM; // round up and shift for number of quanta
    slot_bytes = k << SHIFT_NANO_QUANTUM;                           // multiply by power of two quanta size
    *pKey = k - 1;                                                  // Zero-based!

    return slot_bytes;
}

算法原理k + 15 >> 4 << 4 ,其中 右移4 + 左移4相当于将后4位抹零,跟 k/16 * 16一样 ,是16字节对齐算法,小于16就成0了
以 k = 2为例,如下图所示

image

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容