TensorFlow-11-策略网络

今日资料:
《Tensorflow 实战》-策略网络
代码:
https://github.com/awjuliani/DeepRL-Agents/blob/master/Policy-Network.ipynb

强化学习是机器学习的一个重要分支,可以解决连续决策的问题。

一个强化学习问题,主要包含三个概念,环境状态,行动,奖励, 强化学习的目标就是获得最多的累计奖励。

它有很多应用,比如控制机器人,无人驾驶,商品定价,库存管理,玩游戏,例如AlphaGo。

例如在围棋这个游戏中,环境状态指的是已经出现的某个局势,行动指在某个位置落子,奖励是指当前这步棋获得的目数,最终的目标就是在结束时总目数超过对手,它是以最终结果为目标,而不是只看当下某个行动带来的利益。

强化学习不像无监督学习那样完全没有学习目标,也不像监督学习那样有非常明确的目标,他的目标一般是变化的不明确的。在围棋游戏中19×19的棋盘带来了3^361种状态,这是无法通过暴力搜索来战胜人类的,所以就需要给计算机抽象思维的能力。AlphaGo 主要使用了快速走子,策略网络,估值网络,和蒙特卡洛搜索树等技术。

深度强化学习模型本质上也是神经网络,主要分为策略网络和估值网络

强化学习中最重要的两类方法, Policy-based , Valu-based

第一种是直接预测在某个环境状态下应该采取的行动,第二种是预测在某个环境状态下所有行动的期望价值,然后通过选择 Q 值最高的行动执行策略。


今天要先来实现一下策略网络,就是要建立一个神经网络模型,可以通过观察环境状态预测出目前最应该执行的策略以及可以获得的最大的期望收益。

我们不会告诉它什么才是比较好的行动,而是需要它通过试验样本自己学习出什么才是某个环境状态下比较好的行动, 也就是它的学习目标是期望价值,包括当前的奖励和未来潜在的奖励,会把未来所有的奖励乘以衰减系数。

策略模型的训练方法是 Policy Gradients,好的行动会带来高期望值,差的行动会带来低期望值,通过对这些样本的学习,模型会逐渐增加,选择好行动的概率。

今天的代码是要用 Tensorflow 创建一个基于策略网络的 Agent 来解决 CartPole 问题。这个问题是一个经典的可以用强化学习来解决的控制问题。就是在它的环境中有一个小车,在一个一维的无阻力轨道上行动,在车上绑着一个连接不太结实的杆儿,这个杆儿会左右摇晃。每个环境信息包含四个值,例如小车的位置速度等,我们不需要编写逻辑来控制小车,而是设计一个策略网络,让它自己从这些数值中学习到环境信息,并制定最佳策略。

安装gym,创建 CartPole 问题的环境。

import gym
env = gym.make('CartPole-v0')

首先,初始化环境,然后进行十次随机试验,在产生随机的行动,然后执行这些行动,并获得,然后把 reward 累加。


我们的策略网络是要使用一个简单的带有一个隐含层的 MLP,隐含层节点数为10,环境信息的维度为4。


首先创建 observation 的 placeholder,然后用 xavier 这个初始化算法来创建隐含层的权重W1,再用ReLu激活函数得到隐藏层的输出,同样初始化W2,再用 sigmoid 激活函数得到最后的输出概率。


优化器用adam算法,然后执行 updategrads 更新模型参数。


下面这个函数是用来估算每一个行动对应的潜在价值,越靠后的行动的期望价值越小,越靠前的价值越大。running add 就是潜在价值,GSM是衰减系数,我们要从后向前累计这些价值。


loglik 是当前行动对应的概率的对数,loss就是我们要做的优化目标。


总是验证次数为一万次,直到累计奖励达到200时停止训练。

gradbuffer 用来存储参数的梯度,完成一个 batch 试验之后再将总梯度更新到模型参数。


用 reshape 得到策略网络输入的格式,然后获得网络输出的概率 tfprob,然后在 0-1 之间随机抽样得到 action,如果它小于这个概率就利用行动取值为1,否则为0。


然后用 discount rewards 函数来计算每一步行动的潜在价值,并进行标准化。
用 newgrads 求解梯度,再将获得的梯度累加。


推荐阅读 历史技术博文链接汇总
http://www.jianshu.com/p/28f02bb59fe5
也许可以找到你想要的

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容