tensorflow动态加载文件

如果把文件全部加载到内存中,对大数据量来说,是不可行的,tensorflow使用列队,通过多线程来操作队列进出。举例子来说明>

tf.train.slice_input_producer是一个tensor生成器,作用是按照设定,每次从一个tensor列表中按顺序或者随机抽取出一个tensor放入文件名队列。

下面这个例子是将文件名加入到队列中,每次从列队中只能取出一个tensor,然后读取图片数据,还是频繁io操作,

import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
def get_image(image_path):  
    content = tf.read_file(image_path)
    tf_image = tf.image.decode_jpeg(content, channels=3)
    return tf_image
def plot_pic(batch_img_one_val, batch_img_two_val, label):
    fig = plt.figure(figsize=(6,2))
    plt.suptitle(label)
    ax1 = fig.add_subplot(1,2,1)
    #ax1.set_title(label)
    ax1.imshow(batch_img_one_val)
    ax1.axis('off')
    ax2 = fig.add_subplot(1,2,2)
    ax2.imshow(batch_img_two_val)
    ax2.axis('off')
    plt.show()
    

def slice_input_producer_one_sample():
    # 重置graph
    tf.reset_default_graph()
    batch_size = 1
    images_one_path_list = ['lda.png', 'snapshot.png','hua.jpeg']
    images_two_path_list = ['tuzi.jpg', 'test.png', 'hua.jpeg']
    label_list = ['lad_tuzi', 'snap_test', 'hua']
    
    # 构造数据queue
    # capacity队列的大小,本例子中一个队列元素是['lda.png','tuzi.jpg','lad_tuzi],理解slice切片功能
    train_input_queue = tf.train.slice_input_producer(
        [images_one_path_list, images_two_path_list,label_list], 
          capacity= 1*batch_size, shuffle=False)
    
    # queue输出数据
    img_one_queue = get_image(train_input_queue[0])
    img_two_queue = get_image(train_input_queue[1])
    label_queue = train_input_queue[2]

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    # 启动queue线程
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    for i in range(10):
        batch_img_one_val, batch_img_two_val, label= sess.run(
            [img_one_queue, img_two_queue,label_queue])

        plot_pic(batch_img_one_val, batch_img_two_val, label)

    coord.request_stop()  
    coord.join(threads)  
    sess.close()
slice_input_producer_one_sample()

第一个



第二个



等等。。注意每次读取两个图片一个label与输入list的对应关系

现在把读取的图片内存加入到新列队中
使用tf.train.shuffle_batch
取两次图片,每次取三个,这样程序就从列队中取出已经加载好的图片内存数据

import matplotlib.pyplot as plt
def conver_image_size(img,hsize, wsize):
    img = tf.image.convert_image_dtype(img, dtype=tf.float32)  
    img = tf.image.resize_images(img, [hsize, wsize])
    return img


def slice_input_producer_demo():
    # 重置graph
    tf.reset_default_graph()
    # 获取图片系统路径,标签信息
    batch_size = 3
    hsize = 377
    wsize = 500
 
    images_one_path_list = ['lda.png', 'snapshot.png','hua.jpeg']
    images_two_path_list = ['tuzi.jpg', 'test.png', 'hua.jpeg']
    label_list = ['lad_tuzi', 'snap_test', 'hua']
    
    # 构造数据queue
    train_input_queue = tf.train.slice_input_producer(
        [images_one_path_list, images_two_path_list,label_list], 
          capacity= 3, shuffle=False)
    
    # queue输出数据
    img_one_queue = get_image(train_input_queue[0])
    img_two_queue = get_image(train_input_queue[1])
    label_queue = train_input_queue[2]
    # shuffle_batch 批量从queue批量读取数据

    img_one_queue = conver_image_size(img_one_queue, hsize, wsize)
    img_two_queue = conver_image_size(img_two_queue, hsize, wsize)
    
    batch_img_one, batch_img_two, batch_label = tf.train.shuffle_batch(
             [img_one_queue, img_two_queue, label_queue],
              batch_size=batch_size,
              capacity =  10 + 10* batch_size,
              min_after_dequeue = 10,
              num_threads=16)
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    
    # 启动queue线程
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    
    for i in range(2):
        batch_img_one_val, batch_img_two_val, label= sess.run(
            [batch_img_one, batch_img_two,batch_label])
        print label
        fig = plt.figure(figsize=(4,6))
        for k in range(batch_size):
            ax1 = fig.add_subplot(batch_size,2,2*k+1)
            ax1.set_title(label[k])
            plt.imshow(batch_img_one_val[k])
            ax2 = fig.add_subplot(batch_size,2,2*k+2)
            ax2.set_title(label[k])
            ax2.imshow(batch_img_two_val[k])
        plt.show()
    coord.request_stop()  
    coord.join(threads)  
    sess.close()
第一次

第二次

string_input_producer加载序列

def string_input_producter_demo():
    tf.reset_default_graph()
    images_one_path_list = ['lda.png', 'snapshot.png','hua.jpeg']
    images_two_path_list = ['tuzi.jpg', 'test.png', 'hua.jpeg']
    label_list = ['lad_tuzi', 'snap_test', 'hua']
    batch_size = 2
    hsize = 377
    wsize = 500
    # 构造数据queue
    train_input_queue = tf.train.string_input_producer(
        images_one_path_list, capacity=10*batch_size)
    
    #queue输出数据
    img_one_queue = get_image(train_input_queue.dequeue())
    
    img_one_queue = conver_image_size(img_one_queue, hsize, wsize)
    # 将图片数据加载到新的队列
    batch_img_one = tf.train.shuffle_batch(
             [img_one_queue],
              batch_size=batch_size,
              capacity =  10 + 10* batch_size,
              min_after_dequeue = 10,
              num_threads=16)
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    
    for i in range(2):
        for k in range(batch_size):
            img_one_val = sess.run(batch_img_one[k])
            fig = plt.figure()
            plt.imshow(img_one_val)
            plt.show()
    coord.request_stop()
    coord.join(threads)
    sess.close()
string_input_producter_demo()

加载CSV文件

A.csv文件如下
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()

batch_size = 2
filenames = ['A.csv', 'B.csv', 'C.csv']

filename_queue = tf.train.string_input_producer(
        filenames, shuffle=False)
# 定义Reader
reader = tf.TextLineReader()
key,value = reader.read(filename_queue)

# 定义Decoder
example, label = tf.decode_csv(
    value, record_defaults = [['null'], ['null']])
batch_data,label_data = tf.train.shuffle_batch(
             [example, label],
              batch_size=batch_size,
              capacity =  10 + 10* batch_size,
              min_after_dequeue = 10,
              num_threads=16)

with tf.Session() as sess:
    # 创建一个协调器,管理线程    
    coord = tf.train.Coordinator()
    # 启动QueueRunner,此时文件数据列队已经进队
    threads = tf.train.start_queue_runners(coord=coord)
    sess.run(tf.global_variables_initializer())

    for i in range(9):
        batch_, label_ = sess.run([batch_data, label_data])
        print batch_
        print label_
        print '-----'
    coord.request_stop()
    coord.join(threads)

每次从列队中加载两个数据


参考
Tensorflow 数据预读取--Queue

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容