菜鸟实习日记~day18(ILSVRC2015—CUVideo)

CUVideo(T-CNN)

1.Use the Kalman Filter to smooth the bounding box locations.

卡尔曼滤波是一种高效率的递归滤波器自回归滤波器)。卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,通过对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标速度。在很多工程应用(如雷达电脑视觉)中都可以找到它的身影。同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要课题。

2.主要框架

(1)Still-image Dectection:

同时使用了两个网络进行detection——DeepID-Net [8] is an extension of R-CNN [3] and CRAFT is an extension of Faster R-CNN

For the provided data track, we pretrained VGG [2] and GoogLeNet [1] with batch normalization (BN)

并且做实验得到finetune时2 : 1DET to VID data ratio achieves the best performance。

(2)Multi-context suppression (MCS)

some false positive detections have very large detection scores. Only using the context information within these frames cannot distinguish them from the positive samples. However, considering the detection results on other frames, we can easily determine that the majority of high-confidence detections are other classes and these positive detections are outliers.利用其他的帧来修正依据本帧上下文得到的错误detection

使用图像检测算法将视频帧当做独立的图像来处理并没有充分利用整个视频的上下文信息。虽然说视频中可能出现任意类别的目标,但对于单个视频片段,只会出现比较少的几个类别,而且这几个类别之间有共现关系(出现船只的视频段中可能会有鲸鱼,但基本不可能出现斑马)。所以,可以借助整个视频段上的检测结果进行统计分析:对所有检测窗口按得分排序,选出得分较高的类别,剩余那些得分较低的类别很可能是误检,需对其得分进行压制(如图2)。经过MCS处理后的检测结果中正确的类别靠前,错误的类别靠后,从而提升目标检测的精度。

The classes of detection scores beyond a threshold are regarded as high-confidence classes and the rest as low-confidence classes.利用detection 分数来划分置信度

motion-guided propagation (MGP)——采用光流

1) There are no region proposals covering enough areas of the objects; 有的地方识别不出来

 2) Due to bad pose or motion blur of an object 抖动、模糊

(3)Tubelet re-scoring

MGP只能解决短时期的传播,我们还需要更长时期的工作:tracking algorithms

High-confidence tracking:

挑选置信度最高的box作为anchors,然后当这个anchor对应的跟踪的失误达到一个阈值,就重新选择anchor。并且,由于高质量的tracking会导致box在空间和时间上的大量堆积,所以采用一个类似NMS的机制~(track box与box的重叠)

Spatial max-pooling:

上面所说的tracking还不够准确,The spatial max-pooling process is to replace tubelet box proposals with detections of higher confidence by the still-image object detector。

我们首先从静止图像对象检测器获得超过阈值的重叠的检测,这里的overlap是指detection和track box的重叠,The higher the overlap threshold, the more confidence on the tubelet box

Tubelet classification and rescoring:

The main idea of temporal rescoring is to classify tubelets into positive and negative samples and map the detection scores into different ranges to increase the score margins。将管道分成positive/negtive样本,并将检测分数映射到不同的范围以增加分数边界。

实验证明top-k (i.e. the kth largest detection score from a tubelet)方法最好

After classification, the detection scores of positive samples are min-max mapped to [0:5;1], while negatives to[0;0:5]. Thus, the tubelet detection scores are globally changed so that the margins between positive and negative tubelets are increased。将正负样本分别限制在0.5-1,0-0.5

3.结果

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容

  • 文章作者:Tyan博客:noahsnail.com | CSDN | 简书 声明:作者翻译论文仅为学习,如有侵权请...
    SnailTyan阅读 23,242评论 1 35
  • 听着薛之谦的歌,穿着单鞋,把头发简单地绑起来,不至于散落一肩,沿着马路走着.....健身房那个大概只有17岁的小哥...
    静兰紫轩阅读 1,091评论 0 0
  • 高一时候学的古文氓,里面的句子还能清楚准确的背诵出来,而给我印象更深的,是语文老师开玩笑的嘱托,不要轻易喜欢一个人...
    冉小7阅读 304评论 0 0
  • 程度的高低 是從你贊美的事物中 得知你的世界裏 有多少的努力 任誰也掩飾不了 我的創作 不止於繪畫 所有觸手能及的...
    蔡振源阅读 210评论 0 2