数据可视化快速上手|matplotlib教程(1)

图片.png

matplotlib是python中的绘图工具库,也是平面数据可视化领域应用最广泛的绘图工具之一,今天我们就从常用函数的角度向大家介绍matplotlib的用法!


本节知识大纲

一、plot()函数

1. 函数功能

展现变量的趋势变化,通常用于绘制线图。

2. 实例代码
import matplotlib.pyplot as plt
import numpy as np
 
x = np.linspace(0.01, 12, 100)  # 生成100个从0.01到12的均匀数值
y = np.cos(x)   # 余弦函数

plt.plot(x,y,ls='-',color='r',lw=2,label='plot figure') # 设置绘图属性
plt.legend()    # 让代码产生效果,如图例的名称
plt.show()  # 显示图像

参数说明:

  • x:x轴上的数字
  • y:y轴上的数字
  • ls:折线的风格
  • color:线条的颜色
  • lw: 折线线条的宽度
  • label:标记图形内容的标签文本

常用的颜色简写:

简写 颜色
'b' 蓝色(blue)
'g' 绿色(green)
'r' 红色(red)
'c' 青色(cyan)
'm' 洋红(magenta)
'y' 黄色(yellow)
'k' 黑色(black)
'w' 白色(white)
3. 效果

二、scatter()函数

1. 函数功能

寻找变量之间的关系,用于绘制散点图。

2.实例代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(2, 9, 500)  # 从2到9均匀取500个数
y = np.random.randn(500)    # 在标准正态分布中随机取500个数
plt.scatter(x,y,s=10,c='g',label='scatter figure') # x,y的数据规模必须要相同
plt.legend()
plt.show()

参数说明:

  • s:散点的大小,默认为50
  • c:散点的颜色,默认为蓝色,这里设为g表示green绿色。
  • label:标记图形内容的标签文本
3.效果
图片.png

三、xlim()函数

1. 函数功能

设置x轴的显示范围

2.实例代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(2,9,500)
y = np.random.randn(500)
plt.scatter(x, y,c='g',s=10,label="scatter figure")
plt.legend()
plt.xlim(0,10)
plt.ylim(0,1)
plt.show()

参数说明:
对x轴操作plt.xlim(xmin,xmax),同理对y轴操作plt.ylim(ymin,ymax)

  • xmin:x轴上的刻度最小值
  • xmax:x轴上的刻度最大值
3.效果
x轴刻度0~10

生成同样的散点分布图,如果把x轴刻度调成与生成范围一致(2~9),我们就会发现散点均匀的分布满了x轴范围。

x = np.linspace(2,9,500)
y = np.random.randn(500)
plt.scatter(x, y,c='g',s=10,label="scatter figure")
plt.legend()
plt.xlim(2,9)
plt.ylim(0,1)
plt.show()
x轴刻度2~9

四、xlabel()函数

1. 函数功能

设置x轴标签文本

2.实例代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0.1, 10, 100)
y = np.cos(x)
plt.plot(x,y,ls='-.',lw=2,c='g',label='xlable')
plt.legend()
plt.xlabel('x-label')  # 设置x轴文本标签
plt.ylabel('y-label')  # 设置y轴文本标签
plt.show()

参数说明:
设置坐标轴x轴文本标签xlabel(string)
设置y轴文本标签ylabel(string)

3.效果
设置坐标轴文本标签的函数图像

五、grid()函数

1. 函数功能

绘制刻度线的网格线

2.实例代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0.1, 10, 100)
y = np.cos(x)
plt.plot(x,y,ls='-',lw=2,c='r',label='grid figure')
plt.legend()
plt.grid(linestyle=":",color='g')
plt.show()

参数说明:

  • linestyle: 网格线线条风格,表示虚线,-表示实线
3.效果
图片.png

六、axhline()函数

1.函数功能

绘制平行于x轴的水平参考线

2. 实例代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0.1, 10, 500)
y = np.cos(x)
plt.plot(x,y,ls='-',c='c',lw=2,label='axhline figure')
plt.legend()
plt.axhline(y=0.0,c='r',ls='--',lw=1)
plt.axvline(x=2.0,c='g',ls='--',lw=1)
plt.show()

参数说明:
绘制水平参考线axhline(y=0.0,c='r',ls='--',lw='1')
制制垂直参考线axvline(x=2.0,c='g',ls='--',lw='1')

  • y:水平参考线的y轴位置
  • x::垂直参考线的x轴位置
3. 效果
参考线

七、axvspan函数

1.函数功能

绘制垂直与x轴的参考区域

2. 实例代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0.1, 17, 500)
y = np.sin(x)
plt.plot(x,y,ls='--',lw=2,c='c',label='axvspan figure')
plt.legend()
plt.axvspan(5, 10, facecolor='b', alpha=0.2)
plt.axhspan(0.0, 0.5, facecolor='g', alpha=0.2)
plt.show()

参数说明:
绘制垂直与x轴的参考区域:plt.axvspan(xmin=5,xmax=10,facecolor='b',alpha=0.2)

  • xmin:参考区域的其实位置
  • xmax:参考区域的终止位置
  • facecolor:参考区域的填充颜色
  • alpha:参考区域填充颜色的透明度
3. 效果
图片.png

八、annotate()函数

1.函数功能

设置指向性注释文本

2. 实例代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0.1, 10, 100)
y = np.cos(x)
plt.plot(x,y,ls='-.',lw=2,c='c',label='annotate figure')
plt.legend()
plt.annotate('minimum', # 图形注释的文本
xy=(np.pi,-1.0),    # 被注释的图形内容坐标
xytext=(5,-0.75),   # 注释文本位置坐标
weight='bold',  # 注释文本字体粗细
color='r',  # 注释文本字体颜色
arrowprops=dict(arrowstyle='->',connectionstyle='arc3',color='r'))  # 箭头的属性
plt.show()

参数说明:
添加图形内容细节指向性箭头注释plt.annotate(string,xy=(np.pi,-1.0),xytext=(5,-0.75),weight='bold',color='r',arrowprops=dict(arrowstyle='->',connectionstyle='arc3',color=''r))

  • string:注释文本内容
  • xy:被注释的图形位置坐标
  • xytext:注释的文本坐标
  • weight:注释的文本的粗细风格
  • color:注释文本的颜色
  • arrowprops:注释指向性箭头的属性,属性值字典里包含了箭头的类型、风格、颜色
3. 效果
图片.png

九、text()函数

1.函数功能

添加无指向型注释

2. 实例代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0.1, 5, 100)
y = np.tan(x)
plt.plot(x,y,ls='-.',lw=1,c='g',label='text figure')
plt.legend()
plt.text(2,0.5,'y=tan(x)',weight='bold',color='r')
plt.show()

参数说明:
在图中添加注释文本plt.text(x,y,string,weight='bold',color='r')

  • x:注释位置的横坐标
  • y:注释位置的纵坐标
  • string:注释的文本内容
3. 效果

十、title()函数

1.函数功能

添加图表标题

2. 实例代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0.1,5,100)
y = np.tan(x)
plt.plot(x,y,ls='-.',lw=1,c='c',label='title figure')
plt.legend()
plt.title('y = tan(x) figure')
plt.show()

参数说明:
添加图表标题:plt.title(string)

  • string:表示标题文本内容
3. 效果
图片.png

十一、legend()函数

1.函数功能

显示图表图例,并设置图例位置

2. 实例代码
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0.1,8,100)
y = np.sin(x)
z = np.cos(x)
plt.plot(x,y,ls='-',lw=1,c='c',label='legend figure 1')
plt.plot(x,z,ls='-.',lw=1,c='r',label='legend figure 2')
plt.legend(loc='lower left')
plt.show()

参数说明:
标识图例plt.legend(loc='lower left')

  • loc:图例在图表中的位置,值可以设置方位字符串,也可以设置方位置编号。
位置字符串 含义 位置代码
'best' 自动寻找最佳位置 0
'upper right' 右上 1
'upper left' 左上 2
'lower left' 左下 3
'lower right' 右下 4
'right' 5
'center left' 左中 6
'center right' 右中 7
'lower center' 中下 8
'upper center' 中上 9
'center' 正中 10
3. 效果
图片.png

十二、综合练习

1. 题目

根据我们本节所介绍的matplotlib知识点,请绘制出以下函数图像:


图片.png
2. 答案

小伙伴们可以根据前面所学的内容,自己动手先敲一下代码,看能不能做出来~

# matplotlib综合案例:
import matplotlib.pyplot as plt
import numpy as np

# plot 线图
x = np.linspace(0.5,3.5,200)
y1 = np.sin(x)
plt.plot(x,y1,ls='--',lw=2,c='k',label='plot figure')
# plot 散点图
y2 = np.random.randn(200)
plt.scatter(x,y2,s=5,c='m',label='scatter figure')
# 设置横纵坐标轴范围
plt.xlim(0.0,4.0)
plt.ylim(-3,3)
# 设置高亮范围显示
plt.axvspan(xmin=1.0, xmax=2.0, facecolor='g', alpha=0.3)
# 设置网格子
plt.grid(linestyle=':',color='g')
# 设置箭头注释
plt.annotate("maximum", 
xy=(np.pi/2,1),
xytext=(2.5,1.5),
weight='bold',
color='r',
arrowprops = dict(arrowstyle='->',connectionstyle='arc3',color='r')
)
# 绘制竖线
plt.axvline(x=np.pi/2,c='c',ls='--',lw=1)
# 设置无箭头注释
plt.text(3.5, -0.5, 'y=sin(x)',color='k')
# 设置title
plt.title("Base matplotlib")
# 设置横纵坐标轴名称
plt.xlabel('x_axis')
plt.ylabel('y_axis')

plt.legend(loc='upper right')
plt.show()

最后,欢迎小伙伴们点赞评论转发收藏!
感谢大家的阅读~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容