数学建模笔记之马尔萨斯人口模型(一)

本文使用Latex公式排版,而简书不支持Latex排版,为获得更好的阅读体验,请移步个人博客原文地址:数学建模笔记之马尔萨斯人口模型(一)

马尔萨斯人口论

基本内容

人口按照几何增长趋势发展( 按照指数函数增长的趋势 )
而实物只有算术增长的趋势( 按照线性函数增长的趋势 )
结论:控制人口增长

马尔萨斯数学模型

现在我们使用 $P(t)$ 表示t时刻的人口数量,用$r$表示人口增长率
现在看做一个连续模型:变化在随时发生,也即人的生老病死随时在发生, 则有:
$$P(t+\Delta t)-P(t)=rP(t)\Delta t$$
$$P(t+dt)-P(t)=rP(t)dt$$
$$\dfrac{dP(t)}{dt}=rP(t)$$
$$P(t_0)=P_0$$
则我们可以根据以上公式推断出当t为某个具体值时, 我们得到的人口数目为 $P(t)=P_0e^{r(t-t_0)}$, 当$t$趋近于无穷大的时候我们发现人口确实成指数增长

从这里我们可以看到数学建模研究的一个大致思路:


数模思路

Logistic模型

在上述马尔萨斯模型中, 人口增长率是基于一定时间段的结果, 例如基于当时的工业农业现有人口现状是有一定意义的,即是说当时的情况下人口增长率是可以在在短期内保持一个特定的数值
但是在当今情况下, 人口增长率必定是一个关于时间的函数
$$r(t)=r(P(t))=r(1-\dfrac{P(t)}{K})$$这里的K表示我们所研究的生态系统最多可以容纳支撑的人口数量(即生物学上所说的最大容纳量)
则人口数量关于时间的积分有:
$$\frac{dN(t)}{dt}=r(1-\frac{N(t)}{K})N(t)$$ $$N(t_0)=N_0$$
则我们取积分后可以得到:
$$N(t)=\frac{K}{1+Ce^{-r(t-t_0)}}$$
其中C表示一个参数:
$$C=\frac{K-P_0}{P_0}$$
则我们考察$t$趋近于无穷大时的极限,结果与马尔萨斯模型完全不同
我们可以绘制出人口与时间关系的图形:


logistic模型图

与马尔萨斯模型相比较,这里增加了一个参数$K$, 而且这个参数不容易计算或估计($K$表示环境最大容纳量)
则我们对模型 $\frac{dN}{dt}=rN(1-\frac{N}{K})$ 考虑离散化:
$$\frac{\Delta N}{\Delta t}=rN(1-\frac{N}{K})$$
则有:
$$N_{t+1}-N_t=rN_t(1-\frac{N_t}{K})$$
这里的时间离散步为1,每一代就是一个时间步
$$N_{t+1}=(1+r)N_t-\frac{r}{K}N_t^2$$
然后我们取定参数$K$,考虑不同的参数$r$:
有:

一周期解

![二周期解]
](http://upload-images.jianshu.io/upload_images/3020761-2ad6a7cd778385cc.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

四周期的解
八周期的解
倍周期示例
混沌

后面的关于时间$t$的离散讨论已经超越这个模型本身了,仅作简单介绍

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容