【论文解读】Concurrent Spatial and Channel `Squeeze & Excitation' in Fully Convolutional Networks


这篇论文提出了一种称为scSE(Concurrent Spatial and Channel `Squeeze & Excitation') block的神经网络,它可以应用在CNN的任意层,用于增强CNN编码空间信息(spatial encoding)能力,提高CNN的图像识别能力。

在Kaggle image segmentation比赛--TGS Salt Identification Challenge中,它帮助我的ResNet34+U-Net模型在LB上的得分提升了0.032,排名提升了50+位。

SE(Squeeze & Excitation) Network / Paper

scSE的灵感源于SE block,因此,有必要先了解SE block。

Figure 1: SE block arch
Figure 2: SE-ResNet arch

Figure 1是SE block的架构图,F_{tr}是常规的CNN layer,F_{sq}(.)是'Squeeze & Excitation'中的'Squeeze',通过global pooling函数将矩阵U(H x W x C)压缩为1 x 1 x C的通道向量。F_{ex}(.,W)则是'Excitation',通过全连接层(FC)的训练得到每个通道的重要性(by sigmoid),最终F_{scale}(.,.)根据excitation来校准采样(feature recalibration),即调整特征矩阵的值: U * excitation(1 x 1 x C)。

ResNet、Inception等CNN的工作原理是相似的:

  • 首先,通过卷积层来提取图像特征
  • 将特征矩阵压缩成特征向量(adaptive global pooling)
  • 通过训练全连接层来找到特征与分类的关联
  • 最终计算出样本对应所有分类的概率

由此可知,图像特征的提取能力是CNN的核心能力,而SE block可以起到为CNN校准采样的作用。以Figure 3为例,图像样本有两个分类:[人, 酒瓶]。根据感受野(Receptive Field)理论,特征矩阵主要来自于样本的中央区域,处在边缘位置的酒瓶的图像特征很大概率会被pooling层抛弃掉。SE block的加入就可以通过F_{scale}(.,.)来调整特征矩阵,增强酒瓶特征的比重,提高它的识别概率。

Figure 3: image sample

scSE Network

Figure 4: scSE arch

理解了SE之后再看scSE就简单多了,scSE在SE的基础上提出cSE、sSE、scSE这三个变种。cSE和sSE分别是根据通道和feature map cell的重要性来校准采样。scSE则是同时进行两种不同采样校准,并将它们的结果结合起来使用。

class SCSEModule(nn.Module):
    def __init__(self, ch, re=16):
        super().__init__()
        self.cSE = nn.Sequential(nn.AdaptiveAvgPool2d(1),
                                 nn.Conv2d(ch,ch//re,1),
                                 nn.ReLU(inplace=True),
                                 nn.Conv2d(ch//re,ch,1),
                                 nn.Sigmoid())
        self.sSE = nn.Sequential(nn.Conv2d(ch,ch,1),
                                 nn.Sigmoid())
    def forward(self, x):
        return x * self.cSE(x) + x * self.sSE(x)

END

本文分析了scSE工作原理:它可以帮助校准CNN的图像特征采样区域,提高CNN图像识别能力。

Refences

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容