一、 235. 二叉搜索树的最近公共祖先
题目连接:https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-search-tree/
思路:二叉搜索树最近的公共祖先的是第一次遇到root.val > p && root.val < q 或者 root.val< p && root.val > p区间
1、递归法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root == null) return null;
if (root.val > p.val && root.val > q.val) {
return lowestCommonAncestor(root.left, p, q);
} else if (root.val < p.val && root.val < q.val) {
return lowestCommonAncestor(root.right, p, q);
} else return root;
}
}
2、迭代法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root == null) return null;
TreeNode cur = root;
while (cur != null) {
if (cur.val > p.val && cur.val > q.val) {
cur = cur.left;
} else if (cur.val < p.val && cur.val < q.val) {
cur = cur.right;
} else {
return cur;
}
}
return null;
}
}
二、 701. 二叉搜索树中的插入操作
题目连接:https://leetcode.cn/problems/insert-into-a-binary-search-tree/
思路一:递归法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode insertIntoBST(TreeNode root, int val) {
if (root == null) return new TreeNode(val);
if (root.val > val) {
root.left = insertIntoBST(root.left, val);
} else {
root.right = insertIntoBST(root.right, val);
}
return root;
}
}
思路二:迭代法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode insertIntoBST(TreeNode root, int val) {
TreeNode cur = root;
while (cur != null) {
if (cur.val > val) {
if (cur.left == null) {
cur.left = new TreeNode(val);
return root;
} else {
cur = cur.left;
}
} else {
if (cur.right == null) {
cur.right = new TreeNode(val);
return root;
} else {
cur = cur.right;
}
}
}
return new TreeNode(val);
}
}
思路三:迭代法,记录前一个节点
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode insertIntoBST(TreeNode root, int val) {
if (root == null) return new TreeNode(val);
TreeNode cur = root;
TreeNode pre = root;
while (cur != null) {
pre = cur;
if (cur.val > val) {
cur = cur.left;
} else {
cur = cur.right;
}
}
if (pre.val > val) {
pre.left = new TreeNode(val);
} else {
pre.right = new TreeNode(val);
}
return root;
}
}
三、 450. 删除二叉搜索树中的节点
题目连接:https://leetcode.cn/problems/delete-node-in-a-bst/
思路:当root.val == key 时候,寻找root.right 是否为空,为空则返回root.left,不为空寻找root.right最小的节点,即TreeNode leftNode = root.right;
while (leftNode.left != null) {
leftNode = leftNode.left;
}
leftNode.left = root.left;
return root.right;
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode deleteNode(TreeNode root, int key) {
if (root == null) return null;
if (root.val > key) {
root.left = deleteNode(root.left, key);
} else if (root.val < key) {
root.right = deleteNode(root.right, key);
} else {
TreeNode rightNode = root.right;
if (rightNode == null) return root.left;
TreeNode leftNode = root.right;
while (leftNode.left != null) {
leftNode = leftNode.left;
}
leftNode.left = root.left;
return rightNode;
}
return root;
}
}