sctransform通过仿射变化对单细胞数据进行标准化

参考文献链接:《Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression》

前言

单细胞标准化的目的是消除技术误差对count数据的影响,但仍能保留生物学上的差异,以此良好的标准化应该具有如下特征:

  1. 具有标准化后的表达水平不应该与cell的测序深度相关,下游处理也不收cell测序深度的影响
  2. 标准化后的某基因在cell间的方差要能反应细胞的异质性;即标准化后具有高方差性的具有应该在不同细胞类型中里面差异表达,而管家基因应该出现低方差性

作者在这里提出了一种新的统计学模型,用于对scRNA-seq数据进行标准化和方差平稳转换。作者的观点是不同组的gene并不能单纯的通过常数因子进行归一化,而需要对每个基因构建一个广义线性模型(GLM)。即将每个基因在不同细胞内的UMI计数作为响应变量,该gene对应的不同cell的深度作为决策变量;而作者采用正则化的负二项回归的残差来代表有效的标准化后的数值,而这些数值不是技术因素的影响

Method

作者采用负二项回归建立模型:


以该基因在某细胞中的的表达量为响应变量,以该细胞的深度为决策变量建立负二项回归
其中 E(xi)gene i 在cell j 的UMI count的期望。
E(xi) 是通过拟合负二项分布而得,值得注意的是这里建立负二项分布是对线性模型的error进行建立:

如上图,由于 εi 满足于负二项分布,那么 yi 也应该服从负二项分布,即当确定一个 xi 后,对应 yi 的观测值(观测值也可以理解为生物学重复)服从负二项分布,E(xi) 即为负二项分布的期望值(分布最高点对应的值),构建负二项分布的目的是方便对系数进行假设检验

因此作者做了三步处理:

  1. 对每一个基因拟合一个回归模型(cell 深度为决策变量,该基因在这个细胞中的表达量作为响应变量)
  2. 利用模型的参数值来学习data全局的趋势
  3. 核回归(ksmooth函数)来捕捉这些趋势,并定义仿射函数,将UMI计数转换为pearson残差

其中:
上式 zij 代表pearson残差
μij 代表由基因表达与细胞测序深度的负二项回归计算所得,一般回归直线上的点即为 μij,确定一个 mj ,则可得到一个以 μij 为期望观测值的负二项分布

这里pearson残差 zij 的意义是:


对于某基因A,在 m3 中基因A表达量位于对应期望的下方,则代表在 m3 中基因A表达量偏低;而在 m2 中靠近直线,则表明表达接近于对应期望;在m1 中表达位于直线上方的,则表明在 m1 中基因A表达量偏高,以此来突出基因A在不同细胞中的表达情况

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容