STEP5.富集分析(待更新)

0.清空环境,加载R包

rm(list = ls())  
load(file = 'step4output.Rdata')
library(clusterProfiler)
library(dplyr)
library(ggplot2)
library(stringr)
library(enrichplot)

1.GO 富集分析

(1)输入数据

#head(deg)
gene_up = deg[deg$change == 'up','ENTREZID'] 
gene_down = deg[deg$change == 'down','ENTREZID'] 
gene_diff = c(gene_up,gene_down)
gene_all = deg[,'ENTREZID']

(2)富集

#以下步骤耗时很长,设置了存在即跳过
if(!file.exists(paste0(gse_number,"_GO.Rdata"))){
  ego <- enrichGO(gene = gene_diff,
                  OrgDb= org.Hs.eg.db,
                  ont = "ALL",
                  readable = TRUE)#gene ID自动转换成gene symbol
  #ont参数:One of "BP", "MF", and "CC" subontologies, or "ALL" for all three.
  save(ego,file = paste0(gse_number,"_GO.Rdata"))
}
load(paste0(gse_number,"_GO.Rdata"))
#class(ego)
#z=ego@result;z

(3)可视化

条带图

barplot(ego)

气泡图

dotplot(ego)

dotplot(ego, split = "ONTOLOGY", font.size = 10, 
        showCategory = 5) + facet_grid(ONTOLOGY ~ ., scale = "free") + 
  scale_y_discrete(labels = function(x) str_wrap(x, width = 45))#当x轴太长时设置了折叠

#geneList 用于设置下面图的颜色
geneList = deg$logFC
names(geneList)=deg$ENTREZID
geneList = sort(geneList,decreasing = T)

(3)展示top通路的共同基因,要放大看。

Gene-Concept Network

cnetplot(ego,categorySize="pvalue", foldChange=geneList,colorEdge = TRUE)
cnetplot(ego, showCategory = 3,foldChange=geneList, circular = TRUE, colorEdge = TRUE)
#Enrichment Map,这个函数最近更新过,版本不同代码会不同
Biobase::package.version("enrichplot")

if(F){
  emapplot(pairwise_termsim(ego)) #新版本
}else{
  emapplot(ego)#老版本
}

(4)展示通路关系

https://zhuanlan.zhihu.com/p/99789859
goplot(ego)可以实现

(5)Heatmap-like functional classification

heatplot(ego,foldChange = geneList,showCategory = 8)

2.KEGG pathway analysis

(1)输入数据 上调、下调、差异、所有基因

gene_up = deg[deg$change == 'up','ENTREZID'] 
gene_down = deg[deg$change == 'down','ENTREZID'] 
gene_diff = c(gene_up,gene_down)
gene_all = deg[,'ENTREZID']

(2)对上调/下调/所有差异基因进行富集分析

if(!file.exists(paste0(gse_number,"_KEGG.Rdata"))){
  kk.up <- enrichKEGG(gene         = gene_up,
                      organism     = 'hsa')
  kk.down <- enrichKEGG(gene         =  gene_down,
                        organism     = 'hsa')
  kk.diff <- enrichKEGG(gene         = gene_diff,
                        organism     = 'hsa')
  save(kk.diff,kk.down,kk.up,file = paste0(gse_number,"_KEGG.Rdata"))
}
load(paste0(gse_number,"_KEGG.Rdata"))

(3)看看富集到了吗?

https://mp.weixin.qq.com/s/NglawJgVgrMJ0QfD-YRBQg
table(kk.diff@result$p.adjust<0.05)#结果为FAUSE即没有富集的结果,不要怀疑自己

table(kk.up@result$p.adjust<0.05)
table(kk.down@result$p.adjust<0.05)

(4)p.adjust不适用可以按照pvalue筛选通路

down_kegg <- kk.down@result %>%
  filter(pvalue<0.05) %>% #筛选行
  mutate(group=-1) #新增列

up_kegg <- kk.up@result %>%
  filter(pvalue<0.05) %>%
  mutate(group=1)

(5)可视化

source("kegg_plot_function.R")#source是不打开脚本的情况下运行代码
g_kegg <- kegg_plot(up_kegg,down_kegg)
g_kegg
#g_kegg +scale_y_continuous(labels = c(4,2,0,2,4))#改横坐标轴,应全为正值
ggsave(g_kegg,filename = 'kegg_up_down.png')

3.GSEA作kegg和GO富集分析

https://www.jianshu.com/p/c5b7b7dbf29b
GSEA是把全部基因进行富集,在GO和KEGG无法富集到的时候可以选择

(1)查看示例数据

data(geneList, package="DOSE")

(2)将我们的数据转换成示例数据的格式

geneList=deg$logFC
names(geneList)=deg$ENTREZID
geneList=sort(geneList,decreasing = T)

(3)富集分析

kk_gse <- gseKEGG(geneList     = geneList,
                  organism     = 'hsa',
                  verbose      = FALSE)
down_kegg<-kk_gse[kk_gse$pvalue<0.05 & kk_gse$enrichmentScore < 0,];down_kegg$group=-1
up_kegg<-kk_gse[kk_gse$pvalue<0.05 & kk_gse$enrichmentScore > 0,];up_kegg$group=1

(4)可视化

g2 = kegg_plot(up_kegg,down_kegg)
g2

4.能看懂的资料越来越多

GSEA学习更多:https://www.jianshu.com/p/baf85b51752e
富集分析学习更多:http://yulab-smu.top/clusterProfiler-book/index.html
弦图:https://www.jianshu.com/p/e4bb41865b7f

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,695评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,569评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,130评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,648评论 1 297
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,655评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,268评论 1 309
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,835评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,740评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,286评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,375评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,505评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,185评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,873评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,357评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,466评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,921评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,515评论 2 359

推荐阅读更多精彩内容