到底是固定还是随机?

2018-Apr-27更新

Xu SZ. Advanced Statistical Methods for Estimating Genetic Variances in Plants. in Plant breeding review vol. 22 2003

Cockerham (1980) further clarified the difference between a fixed effect model and a random effect model. When the founders are not randomly sampled, the genetic effects (first moments) are considered to be the parameters of interest and the model is a fixed model. Under the fixed effect model, researchers are primarily interested in the genetic differences of the founders under investigation and have no desire to infer the genetic variance of the population from which the founders are sampled. On the other hand, if the founders are randomly sampled from a population, the genetic effects are considered as random variables. In this case, the purpose of the genetic analysis is to infer the genetic variance of the population from which the founders are drawn, leading to a random model.

Cockerham原文中是这样说的:
It is for estimation and hypothesis testing concerning gene action that I wish to review and compare some of the random and fixed entry approaches. Sometimes the breeder is working with populations such as varieties which are near-equilibrium populations. In this case many forms of breeding lead to individuals which can be considered to be random members of the population. The population then serves as a reference base with parameters for random members, and thus, the model for the individual with random gene effects. On the other hand, the breeder often has selected sets of material such as screened inbred lines or varieties, or such a varied collection of these, that it is hard to imagine that they could have any connection with some equilibrium population. Consequently, he tends to view his collection as a fixed set. Moreover, he may be interested only in possible derivatives of his material, and thus he has all of the genes of interest constituted in the material at hand, but of course not necessarily constituted in the best combinations.


一个效应到底应该当做固定还是随机通常令人困惑。如果已有惯例,例如父本、家系效应一般当做随机,而重复、性别当做固定,照搬就是。相反,对另外一些效应的处理如果没有多少文献支撑,就有点让人模棱两可。总不能没有规则地按照自己的喜好吧?Smith(2001)给了一个明确的信息,即在需要预测一个效应的未来表现时要随机,否则要固定,并举例说要预测品种(variety)的未来表现,而不希望预测环境效应。这样这个问题就很明确了。原文如下:

Smith A, Cullis B, Gilmour A. 2001. The Analysis of Crop Variety Evaluation Data in Australia. Australian & New Zealand Journal of Statistics, 43(2): 129–145.

One possibly contentious issue is the choice between fixed and random effects in the analysis. The standard text-book notion of effects being random if they have been sampled from a population and fixed if attention is confined only to those effects in the model (see Searle, 1971, for example) is unhelpful and can lead to a circular argument. In our opinion the choice depends on the aim of the analysis. In terms of variety effects our aim is to predict future performance. This is best achieved by assuming the effects to be random. We do not wish to predict environment effects. The effects could be assumed random in order to recover information on varieties, but the variance component for environments is usually so large that very little information is recovered. The magnitude of the component also means there is very little shrinkage of environment effects, with the result that BLUPs and BLUEs are almost identical. We therefore assume that environment effects are fixed.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容