个人感觉这道题其实比一般的回溯问题要难一些,或者说更特殊一些
首先,一般的回溯问题,for循环都是在递归的外侧,如此,一旦递归返回,会继续循环进行下一次递归。更确切的说,对于当前层,只有一个递归。
但是这个问题for循环是为递归服务的,对于每一个当前层,我们需要多个递归。又我们起始位置又有多个,因此还需要一个for循环,所以我们不仅在回溯函数的内部使用for循环,在外部同样需要使用。
再一个问题就是,由于需要对下一层进行边界判断,导致最后一个字母需要在if中判断。
package No79_WordSearch;
public class Solution {
boolean[][] expored; // 走过的点
int[][] dirctions; // 方向
char[][] board;
String word;
public boolean exist(char[][] board, String word) {
int row = board.length;
int col = board[0].length;
if (row == 0 || col == 0)
return false;
expored = new boolean[row][col];
dirctions = new int[][]{{0, 1}, {0, -1}, {-1, 0}, {1, 0}};
this.board = board;
this.word = word;
for (int i = 0; i < row; i ++) {
for (int j = 0; j < col; j ++) {
if (traceBack(i, j, 0))
return true;
}
}
return false;
}
private boolean traceBack(int i, int j, int start) {
if (start == word.length() - 1) { // 最后一个必须在此处判断 如果再次进入会被continue
return board[i][j] == word.charAt(start);
}
if (board[i][j] == word.charAt(start)) {
expored[i][j] = true;
for (int k = 0; k < 4; k ++) {
int newi = i + dirctions[k][0];
int newj = j + dirctions[k][1];
if (!isValid(newi, newj) || expored[newi][newj]) {
continue;
}
if (traceBack(newi, newj, start + 1)) {
return true;
}
}
expored[i][j] = false;
}
return false;
}
private boolean isValid(int i, int j) {
return i >=0 && i < board.length && j >=0 && j < board[0].length;
}
public static void main(String[] args) {
Solution solution = new Solution();
// String word = "ABCCED";
// String word = "SEE";
// String word = "ABCB";
String word = "a";
// char[][] board = new char[][]{{'A','B','C','E'}, {'S','F','C','S'}, {'A','D','E','E'}};
char[][] board = new char[][]{{'a'}};
boolean res = solution.exist(board, word);
System.out.println(res);
}
}
如果不想在if中进行最后一个字母的判断 当然也可以
package No79_WordSearch;
public class Solution2 {
boolean[][] expored; // 走过的点
int[][] dirctions; // 方向
char[][] board;
String word;
public boolean exist(char[][] board, String word) {
int row = board.length;
int col = board[0].length;
if (row == 0 || col == 0)
return false;
expored = new boolean[row][col];
dirctions = new int[][]{{0, 1}, {0, -1}, {-1, 0}, {1, 0}};
this.board = board;
this.word = word;
for (int i = 0; i < row; i ++) {
for (int j = 0; j < col; j ++) {
if (traceBack(i, j, 0))
return true;
}
}
return false;
}
private boolean traceBack(int i, int j, int start) {
if (start == word.length()) { // 最后一个必须在此处判断 如果再次进入会被continue
return true;
}
if (!isValid(i, j) || expored[i][j]) {
return false;
}
if (board[i][j] == word.charAt(start)) {
expored[i][j] = true;
for (int k = 0; k < 4; k ++) {
int newi = i + dirctions[k][0];
int newj = j + dirctions[k][1];
if (traceBack(newi, newj, start + 1)) {
return true;
}
}
expored[i][j] = false;
}
return false;
}
private boolean isValid(int i, int j) {
return i >=0 && i < board.length && j >=0 && j < board[0].length;
}
public static void main(String[] args) {
Solution2 solution = new Solution2();
// String word = "ABCCED";
// String word = "SEE";
// String word = "ABCB";
// char[][] board = new char[][]{{'A','B','C','E'}, {'S','F','C','S'}, {'A','D','E','E'}};
// String word = "a";
// char[][] board = new char[][]{{'a'}};
String word = "ABCB";
char[][] board = new char[][]{{'A','B','C','E'}, {'S','F','C','S'}, {'A','D','E','E'}};
boolean res = solution.exist(board, word);
System.out.println(res);
}
}