MySQL Join的底层实现原理

mysql只支持一种join算法:Nested-Loop Join(嵌套循环连接),但Nested-Loop Join有三种变种:Simple Nested-Loop Join,Index Nested-Loop Join,Block Nested-Loop Join
(注:参考公众号:InsideMySQL)


原理:

1.Simple Nested-Loop Join:

如下图,r为驱动表,s为匹配表,可以看到从r中分别取出r1、r2、......、rn去匹配s表的左右列,然后再合并数据,对s表进行了rn次访问,对数据库开销大


微信截图_20181122171451.png

2.Index Nested-Loop Join(索引嵌套):

这个要求非驱动表(匹配表s)上有索引,可以通过索引来减少比较,加速查询。
在查询时,驱动表(r)会根据关联字段的索引进行查找,挡在索引上找到符合的值,再回表进行查询,也就是只有当匹配到索引以后才会进行回表查询。
如果非驱动表(s)的关联健是主键的话,性能会非常高,如果不是主键,要进行多次回表查询,先关联索引,然后根据二级索引的主键ID进行回表操作,性能上比索引是主键要慢。


微信截图_20181122171515.png

3.Block Nested-Loop Join:

如果有索引,会选取第二种方式进行join,但如果join列没有索引,就会采用Block Nested-Loop Join。可以看到中间有个join buffer缓冲区,是将驱动表的所有join相关的列都先缓存到join buffer中,然后批量与匹配表进行匹配,将第一种多次比较合并为一次,降低了非驱动表(s)的访问频率。默认情况下join_buffer_size=256K,在查找的时候MySQL会将所有的需要的列缓存到join buffer当中,包括select的列,而不是仅仅只缓存关联列。在一个有N个JOIN关联的SQL当中会在执行时候分配N-1个join buffer。


微信截图_20181122171528.png

实例:

假设两张表a 和 b:

a结构:
comments_id        bigInt(20)    P
for_comments_if    mediumint(9)
product_id         int(11)
order_id           int(11)
...
b结构:
id            int(11)       p
comments_id   bigInt(20)
product_id    int(11)
...

其中b的关联有comments_id,所以有索引。

join:

SELECT * FROM a gc
JOIN b gcf ON gc.comments_id=gcf.comments_id
WHERE gc.comments_id =2056

使用的是Index Nested-Loop Join,先对驱动表a的主键筛选,得到一条,然后对非驱动表b的索引进行seek匹配,预计得到一条数据。

下面这种情况没用到索引:

SELECT * FROM a gc
JOIN b gcf ON gc.order_id=gcf.product_id

使用Block Nested-Loop Join,如果b表数据少,作为驱动表,将b的需要的数据缓存到join buffer中,批量对a表扫描

left join:

SELECT * FROM a gc
LEFT JOIN b gcf ON gc.comments_id=gcf.comments_id

这里用到了索引,所以会采用Index Nested-Loop Join,因为没有筛选条件,会选择一张表作为驱动表去进行join,去关联非驱动表的索引。

如果加了条件:

SELECT * FROM b gcf
LEFT JOIN a gc ON gc.comments_id=gcf.comments_id
WHERE gcf.comments_id =2056

就会从驱动表筛选出一条来进行对非驱动表的匹配。


left join:会保全左表数据,如果右表没相关数据,会显示null
fight join:会保全右表数据,如果左表没相关数据,会显示null
inner join:部分主从表,结果会取两个表针对on条件相匹配的最小集

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,284评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,115评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,614评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,671评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,699评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,562评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,309评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,223评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,668评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,859评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,981评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,705评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,310评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,904评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,023评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,146评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,933评论 2 355

推荐阅读更多精彩内容