素数判定 高级程序员才知道的那些事儿

在信息安全领域,经常需要用到一些大素数,比如著名的RSA算法就必须依赖到两个大素数。幸运的是自然数中素数还真不少(很简单就能证明素数有无穷多个),而且密度也不算低,所以找到一个素数不是那么难,但让你找一个能用在RSA算法里的素数就比较难了。

暴力试除

试想下,如果现在让你去寻找出一个素数,你会怎么办?记得刚上大学刚学会C语言基本语法后,有道课后题就是判定一个数是否是素数,具备基本编程能力的人一定能写出如下代码:

boolean checkPrime(int n) {
    for (int i = 2; i*i <= n; i++) {
        if (n%i == 0) {
            return false;
        }
    }
    return true;
}

素数判定最简单的方法就是试除,也就是上面代码。它的原理是从2到根号n,看n是否能被某个数除尽,如果能那n肯定不是素数,反之一定是素数。这确实是个简单粗暴且正确的方法,唯一的问题是它太慢了,判定一个数的时间复杂度是O(n)。如果让你用这种方法去判断一个几百位的数是否是素数,那可能用现在最先进的计算机,也需要n多年才能算出来。

筛选法

当然素数判定还有一个更快的批量判定算法——埃氏筛选,他找到n以内的所有素数只需要O(n log log n)的时间复杂度。

在这里插入图片描述

其原理是这样的,设置一个标记数组,开始先把2的所有倍数都标记了,然后往后走发现3没有被标记,那3肯定是个素数,然后在标记数组中把所有3的倍数标记掉,然后发现4已经被标记了 跳过,到5……,直到标记完所有数字,那么剩下未标记的数字就是素数了,见上图,代码如下:

int[] signs = new int[n+1];
void eratosthenes(int n) {
    for (int i = 2; i <= n; i++) {
        if (signs[i] == 0) {
            for (int j = i * i; j <= n; j += i) {
                signs[j] = 1;
            }
        }
    }
}

埃氏筛选法虽然看起来比较快,但他也有自己的问题。首先他只能批量,对单个的n判定时也是需要筛出所有小于n的素数的。其次,它还需要依赖存储空间来存储标记。所以它仍然无法被用在超大素数的判定上。

有没有更快找到一个素数的方法?自从中世纪以来,有好多的数学家都在致力于寻找传中的素数公式。比如欧拉在1772年发现,f(n) = n^2 + n + 41 当n小于41时 f(n)的值都是素数,虽然后来也有数学家相继发现了能生成更大素数的公式,但这些公式能生成的数依旧是很有限的。到了高斯时代,基本上确认了简单的质数公式是不存在的,因此,高斯认为对素性判定是一个相当困难的问题。

费马小定理

https://upload-images.jianshu.io/upload_images/1473092-749f42e9a4e60d4b.png

然而,事情总是有转机的。让我们一起回到1636年,著名数学家费马在一封信中写出这样一个公式。

如果p是一个素数,且a不是p的倍数,则有a^(p-1) ≡ 1(mod p)

后来证明a不是p的倍数这个条件不是必须的。 这个定理的含义就是只要p是素数,那么(a^(p-1))mod p恒等于1,这就是著名的费马小定理。可能你已经在想,能不能用这个定理来判定素数,确实费马小定理反过来也几乎是成立的,如果一个数p能使得a^(p-1) ≡ 1(mod p),p有很大概率是个素数,注意这里是几乎成立。

public class PrimeNumCheck {
    public static boolean check(long a, long p) {
        long res = fastMod(a, p-1, p);
        return res == 1;
    }

    public static long fastMod(long x, long n, long m) {
        if (n == 1) {
            return x % m;
        }
        long tmp = fastMod(x, n>>1, m);
        if (n % 2 == 0) {
            return (tmp * tmp) % m;
        } else {
            return (tmp * tmp * x) % m;
        }
    }
    
    public static void main(String[] args) {
        System.out.println(check(2, 7));
    }
}

用如上Java代码,可以快速的概率性判定一个数是否是素数(判定结果不是100%准确),这也取决于上述代码中a的选择。上面用到了快速幂算法,能将对一个数的n次幂取模的时间复杂度降到O(logn)。我们似乎可以将素数的判定时间复杂度从O(n)降低到O(logn),这是质的飞跃,从原来的几乎不可计算变为可计算,这才为大素数的应用铺平了道路。

但是别急,它还有些小缺陷。我刚说了费马小定理反过来是几乎成立的,我一直在强调几乎二字。因为有些和数n也能使得a^(n-1) ≡ 1(mod n)成立,这些使得a^(n-1) ≡ 1(mod n)的合数被称为基于a伪素数,比如前几个基于2的伪素数分别是341、561、645……。不过这种伪素数也非常少,实际上,对于一个512位的数,其中基于2的伪素数不到1/10^20,如果是1024位的数的话,伪素数概率就只有不到1/10^41了。这个概率究竟有多低,举个例子,你能随机找到一个512位基于2的伪素数的概率比你中五百万大奖的概率都小。 所以你是随机找一个素数,基于2的费马小定理判定已经足够用了。

当然如果你非要追求更高准确率的话,还是可以优化的,毕竟基于2的伪素数并不一定是基于其他a的伪素数,所以我们可以多换几个不同的a来进一步提升上述代码的准确性。 但历史告诉我们凡事总有意外。有些合数对于任意的a都能使得费马定理成立,这些数被称为卡迈克尔数(Carmichael Number),前几个卡迈克尔数分别是561 1105 1729…… 关于卡迈克尔数又是另一个故事了。

小结

费马小定理这种概率性的解法给了我们解决问题的一种新思路,就好比用布隆过滤器一样,它们都不是百分百准确,但可以在准确性可控的情况下得到更高效的解决方案。计算机的世界不仅可以用空间换时间,还可以用准确率换时间。

像费马定理这种神奇的数学定理,我感觉这似乎是上帝在造物时埋下的一个关于数字的小彩蛋,而我也坚信这种小彩蛋还有很多,没准那天我们可以发现上帝隐藏在圆周率里的笑话呢!!

参考资料

本文来自https://blog.csdn.net/xindoo

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容