学习小组Day5笔记--未停

镜像设置

  • CRAN的镜像不能下载Bioconductor的包

CRAN是R默认使用的R包仓库,install.packages()只能用于安装发布在CRAN上的包。此外还有几个软件包仓库,而Bioconductor是基因组数据分析相关的软件包仓库,需要用专门的命令进行安装。BiocManager::install()是最新版本的R和 Bioconductor安装Bioconductor 软件包的命令
作者:atuofatating
链接:https://www.jianshu.com/p/8e0dece51757
来源:简书

Rstudio最重要的两个配置文件:在刚开始运行Rstudio的时候,程序会查看许多配置内容,其中一个就是.Renviron,它是为了设置R的环境变量(这里先不说它);而.Rprofile就是一个代码文件,如果启动时找到这个文件,那么就替我们先运行一遍(这个过程就是在启动Rstudio时完成的)——生信星球

file.edit('~/.Rprofile')后在脚本框敲入
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") 保存重启即可,但并不是所有的都可以设置成功,随缘!

安装

  • install.packages(“包”)——cran的包
  • BiocManager::install(“包”)——bioconductor的包

加载

  • library(包)
  • require(包)


    图片.png
  • 安装时路径报错——以管理员身份运行rstudio


    图片.png

dplyr的五个基本操作

1.按行数提取
select(test,c(1,5))#列1和5
select(test,1)
mutate(test, new = Sepal.Length * Sepal.Width)#创造新的一列为Sepal.Length乘以Sepal.Width
2.按列名提取
select(test, Petal.Length, Petal.Width)选择Petal.Length和Petal.Width两列
3.筛选
filter(test, Species == "setosa")
filter(test, Species == "setosa"&Sepal.Length > 5 )#筛选species列中的setosa且sepal》length大于5
filter(test, Species %in% c("setosa","versicolor"))#筛选species列中的setosa和versicolor
4.排序
arrange(test, Sepal.Length)#默认以sepal.length从小到大排序
arrange(test, desc(Sepal.Length))#用desc从大到小
?desc#将以降序排列
5.汇总
summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差
分组汇总先按照Species分组再计算每组Sepal.Length的平均值和标准差
group_by(test, Species)# 按照species分组
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))

管道操作

图片.png

对于数据的连续处理,要么是长长的函数嵌套调用括号包一切;要么就是每次操作赋值一个临时变量。管道操作将两行代码连续
test %>%
group_by(Species) %>%
summarise(mean(Sepal.Length), sd(Sepal.Length))


图片.png

R语言中管道操作 %>%, %T>%, %$% 和 %%
https://blog.csdn.net/zhaozhn5/article/details/79001384

将两个表连接取交集

options(stringsAsFactors = F)

test1 <- data.frame(x = c('b','e','f','x'),
z = c("A","B","C",'D'),
stringsAsFactors = F)
test2 <- data.frame(x = c('a','b','c','d','e','f'),
y = c(1,2,3,4,5,6),
stringsAsFactors = F)#将两个表连接
inner_join(test1, test2, by = "x")#取x的交集
left_join(test2, test1, by = 'x')#左连
full_join(test1, test2, by='x')#全连


图片.png

图片.png

合并表

test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test2 <- data.frame(x = c(5,6), y = c(50,60))
test3 <- data.frame(z = c(100,200,300,400))
bind_rows(test1, test2)#需要列数相同才能合并行
bind_cols(test1, test3)#行数相同才能够合并列


图片.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容