pytorch的layernorm

建议使用torch.nn.LayerNorm实现,比torch.layer_norm灵活度更高。
可对tensor实现任意维度的归一化操作。
官方示例:

        >>> # NLP Example
        >>> batch, sentence_length, embedding_dim = 20, 5, 10
        >>> embedding = torch.randn(batch, sentence_length, embedding_dim)
        >>> layer_norm = nn.LayerNorm(embedding_dim)
        >>> # Activate module
        >>> layer_norm(embedding)
        >>>
        >>> # Image Example
        >>> N, C, H, W = 20, 5, 10, 10
        >>> input = torch.randn(N, C, H, W)
        >>> # Normalize over the last three dimensions (i.e. the channel and spatial dimensions)
        >>> # as shown in the image below
        >>> layer_norm = nn.LayerNorm([C, H, W])
        >>> output = layer_norm(input)

通过官方示例可知LN在NLP和CV领域用法的不同。
在NLP中,LN相当于IN(instance normalization),只对最后一维上的元素做归一化(图1最右);
在CV中,LN会对C,H,W三个维度上的所有元素做归一化(图1中间)。

图1

而且,torch.nn.LayerNorm默认的elementwise_affine=True,即有可学习的scale和bias参数,like BN。

假设和实验

根据以上示例很自然想到,如果 layer_norm = nn.LayerNorm([N, H, W]),layer_norm就变成了BN。

N, C, H, W = 20, 5, 10, 10
input = torch.randn(N, C, H, W)
layer_norm = torch.nn.LayerNorm([N, H, W])
output = layer_norm(input)

RuntimeError: Given normalized_shape=[20, 10, 10], expected input with shape [*, 20, 10, 10], but got input of size[20, 5, 10, 10]

报错了,不允许这样的设定。
但我们可以通过将tensor的N/C两个维度交换一下来实现同样的效果:

N, C, H, W = 20, 5, 10, 10
input = torch.randn(N, C, H, W)
# LN
layer_norm = torch.nn.LayerNorm([N, H, W],elementwise_affine=False)
output = layer_norm(input.transpose(0,1)).transpose(0,1)
# BN
bn = torch.nn.BatchNorm2d(C,affine=False)
ouput_bn = bn(input)
# 结果相减
torch.sum(output-ouput_bn)

result:
tensor(8.2701e-07)

可见假设成立。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,837评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,551评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,417评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,448评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,524评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,554评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,569评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,316评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,766评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,077评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,240评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,912评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,560评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,176评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,425评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,114评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,114评论 2 352

推荐阅读更多精彩内容