Given an index k, return the kth row of the Pascal's triangle.
For example, given k = 3,
Return [1,3,3,1].
Note:
Could you optimize your algorithm to use only O(k) extra space?
解题思路:
题目参考见 Q118 Pascal's Triangle
要求空间复杂度为O(k),所以构造一半。最后根据奇、偶行构造完整的返回值。思路一样,即第k行的数是由第k-1行的数得到的,因此循环构造即可。
Python实现:
class Solution:
def getRow(self, rowIndex):
"""
:type rowIndex: int
:rtype: List[int]
"""
if rowIndex < 0:
return []
rlist = []
rlist.append(1)
i = 1
while i <= rowIndex:
j = len(rlist) - 1
while j > 0: # 构造下一个列表元素
rlist[j] = rlist[j] + rlist[j-1]
j -= 1
if i % 2 == 1: # 如果是奇数行,需要加一个元素
rlist.append(rlist[-1])
i += 1
# 构造另一半
if rowIndex % 2 == 1: # 如将 [1,3,3] 变成 [1,3,3,1]
rlist.extend(rlist[-3::-1])
else: # 如将 [1,4,6] 变成 [1,4,6,4,1]
rlist.extend(rlist[-2::-1])
return rlist
a = 3
b = Solution()
print(b.getRow(a)) # [1,3,3,1]