对ClickHouse分片和分区的简单理解

最近由于工作,接触到了现在比较🔥的OLAP数据库-ClickHouse,其中有个重要的概念就是分片(shard)。其实在MySql等传统的关系型数据库中,分库分表的架构也会用到分片的设计,但由于之前没接触过, 这个概念还是比较陌生。

分区是表的分区,具体的DDL操作关键词是 PARTITION BY,指的是一个表按照某一列数据(比如日期)进行分区,对应到最终的结果就是不同分区的数据会写入不同的文件中。

分片复用了数据库的分区,相当于在原有的分区下,作为第二层分区, 是在不同节点/机器上的体现。

具体关系如下:

5B44935F-CB49-4585-B953-AB420D9C3025.png

数据分区-允许查询在指定了分区键的条件下,尽可能的少读取数据
数据分片-允许多台机器/节点同并行执行查询,实现了分布式并行计算

数据Sharding

ClickHouse支持单机模式,也支持分布式集群模式。在分布式模式下,ClickHouse会将数据分为多个分片,并且分布到不同节点上。不同的分片策略在应对不同的SQL Pattern时,各有优势。ClickHouse提供了丰富的sharding策略,让业务可以根据实际需求选用。

1) random随机分片:写入数据会被随机分发到分布式集群中的某个节点上。

2) constant固定分片:写入数据会被分发到固定一个节点上。

3) column value分片:按照某一列的值进行hash分片。

4) 自定义表达式分片:指定任意合法表达式,根据表达式被计算后的值进行hash分片。

数据分片,让ClickHouse可以充分利用整个集群的大规模并行计算能力,快速返回查询结果。

更重要的是,多样化的分片功能,为业务优化打开了想象空间。比如在hash sharding的情况下,JOIN计算能够避免数据shuffle,直接在本地进行local join;支持自定义sharding,可以为不同业务和SQL Pattern定制最适合的分片策略;利用自定义sharding功能,通过设置合理的sharding expression可以解决分片间数据倾斜问题等。
另外,sharding机制使得ClickHouse可以横向线性拓展,构建大规模分布式集群,从而具备处理海量数据的能力。

不过ClickHouse的集群的水平拓展目前是一个瓶颈,因为历史数据的存在, 避免新增节点之后的数据倾斜是个难点。

数据Partitioning

ClickHouse支持PARTITION BY子句,在建表时可以指定按照任意合法表达式进行数据分区操作,比如通过toYYYYMM()将数据按月进行分区、toMonday()将数据按照周几进行分区、对Enum类型的列直接每种取值作为一个分区等。

数据Partition在ClickHouse中主要有两方面应用:

在partition key上进行分区裁剪,只查询必要的数据。灵活的partition expression设置,使得可以根据SQL Pattern进行分区设置,最大化的贴合业务特点

对partition进行TTL管理,淘汰过期的分区数据。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容