Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.
Note:
Each of the array element will not exceed 100.
The array size will not exceed 200.
Example 1:
Input: [1, 5, 11, 5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].
Example 2:
Input: [1, 2, 3, 5]
Output: false
Explanation: The array cannot be partitioned into equal sum subsets.
Solution:DP
思路: 将数组分成两个bi_sum = sum / 2的。
dp[i]: 表示数字i是否是原数组的任意个子集合之和,那么我们我们最后只需要返回dp[target]就行了。
我们初始化dp[0]为true,由于题目中限制了所有数字为正数,那么我们就不用担心会出现和为0或者负数的情况。
递归公式: 我们需要遍历原数组中的数字,对于遍历到的每个数字nums[i],我们需要更新我们的dp数组,要更新[nums[i], target]之间的值,那么对于这个区间中的任意一个数字j,如果dp[j - nums[i]]为true的话,那么dp[j]就一定为true,于是地推公式如下:
dp[j] = dp[j] || dp[j - nums[i]] (nums[i] <= j <= target)
即:外层遍历对每一个元素a,内层遍历求得用+上这个元素a所有能得到的value情况
题目类似:377. Combination Sum IV
Time Complexity: O(value*N) Space Complexity: O(value)
Solution Code:
public class Solution {
public boolean canPartition(int[] nums) {
// check edge case
if (nums == null || nums.length == 0) {
return true;
}
// preprocess
int volumn = 0;
for (int num : nums) {
volumn += num;
}
if (volumn % 2 != 0) {
return false;
}
volumn /= 2;
// dp def
boolean[] dp = new boolean[volumn + 1];
// dp init
dp[0] = true;
// dp transition
for (int i = 1; i <= nums.length; i++) {
for (int j = volumn; j >= nums[i-1]; j--) {
dp[j] = dp[j] || dp[j - nums[i-1]];
}
}
return dp[volumn];
}
}