Fisherfaces人脸识别---OpenCV-Python开发指南(44)

Fisherfaces原理

PAC方法是EigenFaces人脸识别的核心,它找到了最大化数据总方差特征的线性组合。但是其具有明显的缺点,在操作过程中会损失许多人脸的特征信息。因此在某些特殊的情况下,如果损失的信息刚好是用于分类的关键信息,必然导致结果预测错误。

Fisherfaces采用LDA(Linear Discriminant Analysis,线性判别分析)实现人脸识别。线性判别分析最早由Fisher在1936年提出,是一种经典的线性学习方法,也被称为“Fisher判别分析法”。

其基本原理:在低维表示下,相同的类应该紧密地聚集在一起;不同的类别应该尽可能地分散开,并且它们之间的距离尽可能地远。简单的概括,线性判别分析就是尽力满足以下两个要求:

  1. 类别间的差别尽可能地大
  2. 类别内的差别尽可能地小

做线性判别分析时,首先将训练集样本集投影到一条直线A上,让投影后的点满足:

  1. 同类间的点尽可能地靠近
  2. 异类间的点尽可能地远离

做完投影后,将待测样本投影到直线A上,根据投影点的位置判定样本的类别,就完成了人脸识别。

Fisherfaces实现人脸识别

在OpenCV中,通过函数cv2.face.FisherFaceRecognizer_create()生成Fisherfaces识别器实例模型,然后应用cv2.face_FaceRecognizer.train()函数完成训练,最后用cv2.face_FaceRecognizer.predict()函数完成人脸识别。

因为Fisherfaces人脸识别步骤与LBPH、EigenFaces代码步骤一模一样,所以我们直接实战通过Fisherfaces实现人脸识别。具体代码如下所示:

images = []
images.append(cv2.imread("42_1.jpg", cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread("42_2.jpg", cv2.IMREAD_GRAYSCALE))
labels = [0, 1]
recognizer = cv2.face.FisherFaceRecognizer_create()
recognizer.train(images, np.array(labels))
predict_image = cv2.imread('42_4.jpg', cv2.IMREAD_GRAYSCALE)
label, confidence = recognizer.predict(predict_image)
if label == 0:
    print("匹配的人脸为尼根")
elif label == 1:
    print("匹配的人脸为瑞克")
print("confidence=", confidence)

运行之后,控制台输出如下:


1.png

通过Fisherfaces进行人脸识别,其confidence返回值也在0到20000之间,只要低于5000,都被认为是相当可靠的识别结果。这里,0就是完全匹配。

训练图像:


42_1.jpg
42_2.jpg

测试图像:


42_4.jpg
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容