思路:一般思路从2开始穷举数字,直到穷举到较小的那个数(更准确的说是绝对值更小)为止。考虑到我们求的是最大公约数,那么可以反过来穷举,这样相比原有思路更快。
``
public static int findGCD(int a, int b){
if(a == 0 || b == 0){
throw new IllegalArgumentException("a="+a + "and b="+b+" is invalid");
}
a = Math.abs(a);
b = Math.abs(b);
int min = Math.min(a,b);
int gcd = min;
while(gcd > 1){
if(a % gcd == 0 && b % gcd == 0){
return gcd;
}
gcd --;
}
return gcd;
}
``
解法二 质因数分解法
思路:把两个整数进行质因数分解,然后从中找出最大的公共因数,即最大公约数。
public static int findGCD2(int a, int b){
if(a == 0 || b == 0){
throw new IllegalArgumentException("a="+a + "and b="+b+" is invalid");
}
a = Math.abs(a);
b = Math.abs(b);
List<Integer> first = getPrimeFactors(a);
List<Integer> second = getPrimeFactors(b);
//找到公共因数,例如
//36和 9
// 36 = 2 * 2 * 3 * 3
// 9 = 3 * 3
//公共部分是 3 * 3,因此最大公约数是9
//因此每找到一个,累积该因数,并且两个集合同时排除该因数
int gcd = 1;
int tmpJ = 0;
for (int i = 0; i < first.size(); i++) {
for (int j = tmpJ; j < second.size(); j++) {
if(first.get(i) == second.get(j)){
gcd *= first.get(i);
//由于外层的循环往后会直接排除前面的因数,因此只需要移除后一个集合
second.remove(j);
//由于我们因数是从小到大排列的,因此后续从此位置开始找开始找
tmpJ = j;
break;
}
}
}
return gcd;
}
//拆分质因数,因数是从小到大插入有序集合中
private static List<Integer> getPrimeFactors(int target){
List<Integer> factors = new ArrayList<>();
int factor = 2;
while(factor <= target){
if(target % factor == 0){
factors.add(factor);
target /= factor;//去除该因数
factor = 2;//重新从2开始计算。
}else{
factor ++;
}
}
return factors;
}
解法三 辗转相除法
思路:欧几里得算法 gcd(a,b) = gcd(b, a mod b) 效率最高
public static int findGCD3(int a, int b){
if(a == 0 || b == 0){
throw new IllegalArgumentException("a="+a + "and b="+b+" is invalid");
}
a = Math.abs(a);
b = Math.abs(b);
int min = Math.min(a,b);
int max = Math.max(a,b);
int mod;
while(true){
mod = max % min;
if(mod == 0){
return min;
}
max = min;
min = mod;
}
}