机器学习中模型参数与超参数的区别

原文链接 https://mp.weixin.qq.com/s/Nwd0Dm2_D1eY3n4z_Fw1FA

导语

什么是参数?

参数作为模型从历史训练数据中学到的一部分,是机器学习算法的关键。
统计学中的“参数”:
在统计学中,你可以假设一个变量的分布,比如高斯分布。高斯分布的两个参数分别是平均值和标准差。这在机器学习中是有效的,其中这些参数可以用数据估计得到并用作预测模型的一部分。
编程中的“参数”:
编程中可以将参数传递给函数。在这种情况下,参数是一个函数参数,可以有一个取值范围。在机器学习中,您正在使用的具体模型就是函数,需要参数才能对新数据进行预测。

“参数”和“模型”有什么关系?

简单来说,模型参数就是模型内部的配置变量,可以用数据估计它的值。
具体来说, 模型参数具有以下特征:

  • 进行模型预测时需要模型参数;
  • 模型参数之可以定义模型功能;
  • 模型参数用数据估计或数据学习得到;
  • 模型参数一般不由实践者手动设置;
  • 模型参数通常作为学习模型的一部分保存。
    通常使用优化算法估计模型参数,优化算法是对参数的可能性进行的一种有效搜索。
    模型参数的一些例子包括:
  • 人造神经网络中的权重;
  • 支持向量机中的支持向量;
  • 线性回归或逻辑回归中的系数;

什么是模型超参数?

模型超参数是模型外部的配置,其值不能从数据估计得到。
具体特征有:

  • **模型超参数常应用于估计模型参数的过程中; **
  • 模型超参数通常由实践者直接指定;
  • 模型超参数通常可以使用启发式方法来设置;
  • 模型超参数通常根据给定的预测建模问题而调整;
    怎样得到它的最优值:对于给定的问题,我们无法知道模型超参数的最优值。但是我们可以使用经验法则来探究其最优值,或复制用于其他问题的值,也可以通过反复试验的方法。
    模型超参数的一些例子包括:
  • 训练神经网络的学习速率;
  • 支持向量机的C和Sigma超参数;
  • KNN问题中的K;

“模型参数”和“模型超参数”

两者的联系:
当针对特定问题调整机器学习算法时,例如使用网络搜索或随机搜索时,你将调整模型或命令的超参数,以发现一个可以使模型预测最熟练的模型参数。许多模型中重要的参数无法直接从数据中估计得到,例如KNN。这种类型的模型参数被成为调整参数,因为没有可用的分析公式来为其计算一个合适的值。

如果你必须手动指定一个“模型参数”,那么它可能就是一个模型超参数。

总结

模型参数是从数据中自动估计的,而模型超参数是手动设置的,并用于估计模型参数的过程。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容