Elasticsearch 之聚合分析入门

本文主要介绍 Elasticsearch 的聚合功能,介绍什么是 Bucket 和 Metric 聚合,以及如何实现嵌套的聚合。

首先来看下聚合(Aggregation):

什么是 Aggregation?

首先举一个生活中的例子,这个是京东的搜索界面,在搜索框中输入“华为”进行搜索,就会得到如上界面,搜索框就是我们常用的搜索功能,而下面这些,比如分类、热点、操作系统、CPU 类型等是根据 ES 的聚合分析获得的相关结果。

看完上面这个例子,下面来看下聚合的定义:

ES 除了搜索以外,还提供针对 ES 数据进行统计分析的功能,也就是聚合,它的特点是实时性非常高,所有的计算结果都是即时返回的,而 Hadoop 等大数据系统得到一个统计结果需要一天的时间,一般都是 T + 1 级别的。

通过聚合,我们会得到一个数据的概览,是分析和总结全套的数据,而不是寻找单个文档,比如海淀区和东城区的客房数量,不同价格区间,可预订的经济型酒店和商务型酒店的数量,这样可以帮助我们过滤搜索的结果,这样的优点是性能高,只需要一条语句,就可以从 ES 得到分析结果,无需再客户端自己去实现分析逻辑。

在 ES 的聚合中主要一共分为四大类:

  • Bucket Aggregation:分桶类型,一些列满足特定条件的文档的集合
  • Metric Aggregation:指标分析类型,一些数学运算,可以对文档字段进行统计分析,比如计算最大值、最小值、平均值等
  • Pipeline Aggregation:管道分析类型,对其他聚合结果进行二次聚合
  • Matrix Aggregation:矩阵分析类型,支持对多个字段的操作并提供一个结果矩阵

在以后的文章会对这些做详细的讲解,本文先来了解下什么是 Bucket 和 Metric:

Bucket 简单来说相当于 SQL 中的 GROUP,可以根据条件,把结果分成一个一个的组,那 Metric 相当于 SQL 中的 COUNT,可以去执行一系列的统计方法。

接下来看什么是 Bucket Aggregation:

Bucket Aggregation

Bucket 就是桶的意思,即按照一定的规则将文档分配到不同的桶中,达到分类分析的目的。如上图所示,左边有一堆文档,右边有三个桶,每个桶有不同的规则,比如第一个桶的规则为价格小于 3000 的,第二个桶为价格大于等于 3000 小于 6000 的,最后一个桶的规则为价格大于 6000 的,然后不同的文档根据不同的价格分到不同的桶中,那么我们就实现了分类。

有了 Bucket 聚合分析机制,我们就可以把公司员工以年龄方式进行区分,以地理位置的方式来区分客户,以男性女性来区分演员等。

根据 Bucket 的分桶策略,常见的 Bucket 聚合分析如下:

  • Terms:直接按照 term 来分桶,如果是 text 类型,则按照分词后的结果分桶
  • Range:指定数值的范围来设定分桶规则
  • Date Range:指定日期的范围来设定分桶规则
  • Histogram:直方图,以固定间隔的策略来分割数据
  • Date Histogram:针对日期的直方图或者柱状图,是时序数据分析中常用的聚合分析类型

下面以 Terms 为例,让我们动手实践下:

这是一个查看航班目的地的统计信息的例子,通过指定关键词为 terms,然后指明 term 字段 fieldDestCountry,下面我们请求下,查看下请求结果:

从结果中可以看到文档根据目的地分成了不同的桶,每个桶还包括 doc_count,这样就可以很轻松知道 ES 存储的航班信息中,去往意大利、美国、中国等国家分别有多少架航班。

在简单了解了 Bucket 聚合分析后,让我们来看下 Metric 聚合分析:

Metric Aggregation

Metric 是基于数据集计算的结果,除了支持在字段上进行计算,同样也支持在脚本产生的结果之上进行计算。Metric 主要分为单值分析和多值分析,具体内容如下:

单值分析,只输出一个分析结果:

  • Min、Max、Avg、Sum
  • Cardinality

其中,Min、Max、Avg、Sum 这些很容易理解,在这里说一下 Cardinality,它是指不同数值的个数,相当于 SQL 中的 distinct。

多值分析,输出多个分析结果:

  • Stats、Extended Stats
  • Percentiles、Percentile Ranks
  • Top Hits

其中,Stats 是做多样的数据分析,可以一次性得到最大值、最小值、平均值、中值等数据;Extended Stats 是对 Stats 的扩展,包含了更多的统计数据,比如方差、标准差等;PercentilesPercentile Ranks 是百分位数的一个统计;Top Hits 一般用于分桶后获取桶内最匹配的顶部文档列表,即详情数据。

了解之后,让我们实操起来,紧接着刚才查看航班目的地的统计信息的例子,如果还想知道机票的均价,最高最低价格,该怎么做呢?这就需要用到 Metric 了:

我们在请求中加入 aggs,其中 avg_price 为自己定义的名字,这个是为了方便在以后理解这个字段返回值的含义,然后分别关键词分别选择 avg、max、min 来完成计算目的地不同的航班的机票均价、最高最低价格,这个请求的执行结果如下所示:

从结果中可以看出,飞往意大利的航班一共有 2371 架,其中机票最高价格为 1195 元,最低价格为 100 元,平均价格为 586 元,很快就可以得到统计的一些结果。

另外,聚合分析还支持嵌套,那么让我们看下如果实现一个嵌套聚合分析:

通过这个请求不但可以获取到航班目的地的统计信息,还可以得到航班抵达时的天气状况,运行结果如下所示:

可以看出,在抵达意大利的航班中,抵达时的天气有 424 次为晴天,417 次为下雨天等,所以通过嵌套的方式就可以很快得到更深层次的数据统计值。

总结

本文对 Elasticsearch 的聚合功能做了初步介绍,也学习 Bucket 和 Metric 聚合分析,在后续文章会对聚合功能做一个更加深入的讲解。

下面是我总结的 Elasticsearch 聚合分析的思维导图,在公众号【武培轩】回复【es】获取思维导图以及源代码。

参考文献

Elastic Stack从入门到实践

Elasticsearch核心技术与实战

https://www.elastic.co/guide/en/elasticsearch/reference/7.1/search-aggregations.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容