Netty 职责链Pipeline详解

1. 设计模式 - 责任链模式

责任链模式(Chain of Responsibility Pattern) 为请求创建了一个处理对象的链。

发起请求和距离处理请求的过程进行解耦:职责链上的处理者负责处理请求,客户只需要将请求发送到职责链上即可,无需关心请求的处理细节和请求的传递。

2. 实现责任链模式

实现责任链模式的 4个要素

  • 处理器抽象类
  • 具体的处理器实现类
  • 保存处理器信息
  • 处理执行
  • 代码的例子

// -----链表形式调用------netty就是类似的这种形式
public class PipelineDemo {
    /**
     * 初始化的时候造一个head,作为责任链的开始,但是并没有具体的处理
     */
    public HandlerChainContext head = new HandlerChainContext(new AbstractHandler() {
        @Override
        void doHandler(HandlerChainContext handlerChainContext, Object arg0) {
            handlerChainContext.runNext(arg0);
        }
    });

    public void requestProcess(Object arg0) {
        this.head.handler(arg0);
    }

    public void addLast(AbstractHandler handler) {
        HandlerChainContext context = head;
        while (context.next != null) {
            context = context.next;
        }
        context.next = new HandlerChainContext(handler);
    }


    public static void main(String[] args) {
        PipelineDemo pipelineChainDemo = new PipelineDemo();
        pipelineChainDemo.addLast(new Handler2());
        pipelineChainDemo.addLast(new Handler1());
        pipelineChainDemo.addLast(new Handler1());
        pipelineChainDemo.addLast(new Handler2());

        // 发起请求
        pipelineChainDemo.requestProcess("火车呜呜呜~~");

    }
}

/**
 * handler上下文,我主要负责维护链,和链的执行
 */
class HandlerChainContext {
    HandlerChainContext next; // 下一个节点
    AbstractHandler handler;

    public HandlerChainContext(AbstractHandler handler) {
        this.handler = handler;
    }

    void handler(Object arg0) {
        this.handler.doHandler(this, arg0);
    }

    /**
     * 继续执行下一个
     */
    void runNext(Object arg0) {
        if (this.next != null) {
            this.next.handler(arg0);
        }
    }
}

// 处理器抽象类
abstract class AbstractHandler {
    /**
     * 处理器,这个处理器就做一件事情,在传入的字符串中增加一个尾巴..
     */
    abstract void doHandler(HandlerChainContext handlerChainContext, Object arg0); // handler方法
}

// 处理器具体实现类
class Handler1 extends AbstractHandler {
    @Override
    void doHandler(HandlerChainContext handlerChainContext, Object arg0) {
        arg0 = arg0.toString() + "..handler1的小尾巴.....";
        System.out.println("我是Handler1的实例,我在处理:" + arg0);
        // 继续执行下一个
        handlerChainContext.runNext(arg0);
    }
}

// 处理器具体实现类
class Handler2 extends AbstractHandler {
    @Override
    void doHandler(HandlerChainContext handlerChainContext, Object arg0) {
        arg0 = arg0.toString() + "..handler2的小尾巴.....";
        System.out.println("我是Handler2的实例,我在处理:" + arg0);
        // 继续执行下一个
        handlerChainContext.runNext(arg0);
    }
}

本质来说,就是定义了一个抽象类,然后具体的处理类实现了这个抽象类中定义的方法,如 AbstractHandler 中的 doHandler 方法。而责任链即表示是一个链式结构,上方的HandlerChainContext 正是起到了这个类似链表的效果,这样的话,就起到了职责“链”的效果了。 即每次执行完HandlerChainContext的AbstractHandler的实现类之后,会判断一下当前的HandlerChainContext 是否为空,不为空则继续执行下一个HandlerChainContext的AbstractHandler的实现类,以此类推。


3. Netty中的ChannelPipeline责任链

Netty中的ChannelPipeline责任链

4. 入站事件和出站事件

入站事件: 通常只I/O 线程生成入站数据。
(通俗理解:从socket底层自己往上冒上来的事件都是入站)
比如EventLoop收到selector的OP_READ事件,入站处理器调用socketChannel.read(ByteBuffer)接收到数据后,这将导致通道的ChannelPipeline中包含的下一个中的channelRead方法被调用。

出站事件:经常是指I/O 线程执行实际的输出操作。
(通俗理解:想主动往socket底层操作的事件的都是出站)
比如bind方法用意是请求server socket绑定到给定的SocketAddress,这将导致通道的ChannelPipeline中包含的下一个出站处理器中的bind方法被调用。


5. Netty 中事件的定义

  • inbound 入站事件


    入站事件
  • outbound 出站事件

出站事件

6. Pipeline中的handler是什么

  • ChannelHandler:用于处理I/O事件或拦截I/O操作,并转发到ChannelPipeline中的下一个处理器。
    这个顶级接口定义功能很弱,实际使用时会去实现下面两大子接口:
    处理入站I/O事件的ChannelInboundHandler、处理出站I/O操作的ChannelOutboundHandler

  • 适配器类:为了开发方便,避免所有handler去实现一边接口方法,Netty提供了简单的实现类:
    1.ChannelInboundHandlerAdapter处理入站I/O事件
    2.ChannelOutboundHandlerAdapter来处理出站I/O操作
    3.ChannelDuplexHandler来支持同时处理入站和出站事件

  • ChannelHandlerContext:实际存储在Pipeline中的对象并非ChannelHandler,而是上下文对象。
    将handler,包裹在上下文对象中,通过上下文对象与它所属的ChannelPipeline交互,向上或向下传递事件或者修改pipeline都是通过上下文对象。

7. 维护Pipeline中的handler

ChannelPipeline是线程安全的,ChannelHandler可以在任何时候添加或删除。
例如,你可以在即将交换敏感信息时插入加密处理程序,并在交换后删除它。
一般操作,初始化的时候增加进去,较少删除。下面是Pipeline中管理handler的API

Pipeline中管理handler的API

8. Handler 的执行分析

假设当前的ChannelPipeline中有以下几个Handler

正常来说,入站事件是由下到上的执行顺序,出站事件是由上到下的顺序


9. 分析registered 入站事件的处理


10. 分析bind出站事件的处理


11. 分析accept入站事件的处理

这是一个分配的过程,main Group负责accept,然后分配sub Group负责read


12. 分析read入站事件的处理

pipeline分析的关键4要素:什么事件、有哪些处理器、哪些会被触发、执行顺序


小结

用户在管道中有一个或多个channelhandler来接收I/O事件(例如读取)和请求I/O操作(例如写入和关闭)。

一个典型的服务器在每个通道的管道中都有以下处理程序,但是根据协议和业务逻辑的复杂性和特征,可能会有所不同:

  • 协议解码器 - 将二进制数据(例如ByteBuf)转换为Java对象。
  • 协议编码器 - 将Java对象转换为二进制数据。
  • 业务逻辑处理程序 - 执行实际的业务逻辑(例如数据库访问)。

责任链设计模式的运用,保证了Netty的高度可拓展性!


如果觉得有收获就点个赞吧,更多知识,请点击关注查看我的主页信息哦~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,284评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,115评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,614评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,671评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,699评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,562评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,309评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,223评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,668评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,859评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,981评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,705评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,310评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,904评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,023评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,146评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,933评论 2 355