LeetCode 力扣 99. 恢复二叉搜索树

题目描述(困难难度)

依旧是二分查找树的题,一个合法的二分查找树随机交换了两个数的位置,然后让我们恢复二分查找树。不能改变原来的结构,只是改变两个数的位置。二分查找树定义如下:

  1. 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
  2. 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
  3. 任意节点的左、右子树也分别为二叉查找树;
  4. 没有键值相等的节点。

解法一 递归

98 题有些像。这里的思路如下:

让我们来考虑交换的位置的可能:

  1. 根节点和左子树的某个数字交换 -> 由于根节点大于左子树中的所有数,所以交换后我们只要找左子树中最大的那个数,就是所交换的那个数

  2. 根节点和右子树的某个数字交换 -> 由于根节点小于右子树中的所有数,所以交换后我们只要在右子树中最小的那个数,就是所交换的那个数

  3. 左子树和右子树的两个数字交换 -> 找左子树中最大的数,右子树中最小的数,即对应两个交换的数

  4. 左子树中的两个数字交换

  5. 右子树中的两个数字交换

思想有了,代码很好写了。

public void recoverTree2(TreeNode root) {
    if (root == null) {
        return;
    }
    //寻找左子树中最大的节点
    TreeNode maxLeft = getMaxOfBST(root.left);
    //寻找右子树中最小的节点
    TreeNode minRight = getMinOfBST(root.right);
    
    if (minRight != null && maxLeft != null) {
        //左边的大于根节点,右边的小于根节点,对应情况 3,左右子树中的两个数字交换
        if ( maxLeft.val > root.val && minRight.val < root.val) {
            int temp = minRight.val;
            minRight.val = maxLeft.val;
            maxLeft.val = temp;
        }
    }

    if (maxLeft != null) {
        //左边最大的大于根节点,对应情况 1,根节点和左子树的某个数做了交换
        if (maxLeft.val > root.val) {
            int temp = maxLeft.val;
            maxLeft.val = root.val;
            root.val = temp;
        }
    }

    if (minRight != null) {
        //右边最小的小于根节点,对应情况 2,根节点和右子树的某个数做了交换
        if (minRight.val < root.val) {
            int temp = minRight.val;
            minRight.val = root.val;
            root.val = temp;
        }
    }
    //对应情况 4,左子树中的两个数进行了交换
    recoverTree(root.left);
    //对应情况 5,右子树中的两个数进行了交换
    recoverTree(root.right);

}
//寻找树中最小的节点
private TreeNode getMinOfBST(TreeNode root) {
    if (root == null) {
        return null;
    }
    TreeNode minLeft = getMinOfBST(root.left);
    TreeNode minRight = getMinOfBST(root.right);
    TreeNode min = root;
    if (minLeft != null && min.val > minLeft.val) {
        min = minLeft;
    }
    if (minRight != null && min.val > minRight.val) {
        min = minRight;
    }
    return min;
}

//寻找树中最大的节点
private TreeNode getMaxOfBST(TreeNode root) {
    if (root == null) {
        return null;
    }
    TreeNode maxLeft = getMaxOfBST(root.left);
    TreeNode maxRight = getMaxOfBST(root.right);
    TreeNode max = root;
    if (maxLeft != null && max.val < maxLeft.val) {
        max = maxLeft;
    }
    if (maxRight != null && max.val < maxRight.val) {
        max = maxRight;
    }
    return max;
}

解法二

参考 这里

如果记得 98 题,我们判断是否是一个合法的二分查找树是使用到了中序遍历。原因就是二分查找树的一个性质,左孩子小于根节点,根节点小于右孩子。所以做一次中序遍历,产生的序列就是从小到大排列的有序序列。

回到这道题,题目交换了两个数字,其实就是在有序序列中交换了两个数字。而我们只需要把它还原。

交换的位置的话就是两种情况。

  • 相邻的两个数字交换

    [ 1 2 3 4 5 ] 中 2 和 3 进行交换,[ 1 3 2 4 5 ],这样的话只产生一组逆序的数字(正常情况是从小到大排序,交换后产生了从大到小),3 2。

    我们只需要遍历数组,找到后,把这一组的两个数字进行交换即可。

  • 不相邻的两个数字交换

    [ 1 2 3 4 5 ] 中 2 和 5 进行交换,[ 1 5 3 4 2 ],这样的话其实就是产生了两组逆序的数字对。5 3 和 4 2。

    所以我们只需要遍历数组,然后找到这两组逆序对,然后把第一组前一个数字和第二组后一个数字进行交换即完成了还原。

所以在中序遍历中,只需要利用一个 pre 节点和当前节点比较,如果 pre 节点的值大于当前节点的值,那么就是我们要找的逆序的数字。分别用两个指针 first 和 second 保存即可。如果找到第二组逆序的数字,我们就把 second 更新为当前节点。最后把 first 和 second 两个的数字交换即可。

中序遍历,参考 94 题 ,有三种方法,递归,栈,Morris 。这里的话,我们都改一下。

递归版中序遍历

TreeNode first = null;
TreeNode second = null;
public void recoverTree(TreeNode root) {
    inorderTraversal(root);
    int temp = first.val;
    first.val = second.val;
    second.val = temp;
}
TreeNode pre = null;
private void inorderTraversal(TreeNode root) {
    if (root == null) {
        return;
    }
    inorderTraversal(root.left); 
    /*******************************************************/
    if(pre != null && root.val < pre.val) {
        //第一次遇到逆序对
        if(first==null){
            first = pre;
            second = root;
        //第二次遇到逆序对
        }else{
            second = root;
        }
    }
    pre = root; 
    /*******************************************************/
    inorderTraversal(root.right);
}

栈版中序遍历

TreeNode first = null;
TreeNode second = null;

public void recoverTree(TreeNode root) {
    inorderTraversal(root);
    int temp = first.val;
    first.val = second.val;
    second.val = temp;
}

public void inorderTraversal(TreeNode root) {
    if (root == null)
        return;
    Stack<TreeNode> stack = new Stack<>();
    TreeNode pre = null;
    while (root != null || !stack.isEmpty()) {
        while (root != null) {
            stack.push(root);
            root = root.left;
        }
        root = stack.pop();
        /*******************************************************/
        if (pre != null && root.val < pre.val) {
            if (first == null) {
                first = pre;
                second = root;
            } else {
                second = root;
            }
        }
        pre = root;
        /*******************************************************/
        root = root.right;
    }
}

Morris 版中序遍历

因为之前这个方法中用了 pre 变量,为了方便,这里也需要 pre 变量,我们用 pre_new 代替。具体 Morris 遍历算法参见 94 题 。利用 Morris 的话,我们的空间复杂度终于达到了 O(1)。

public void recoverTree(TreeNode root) {
    TreeNode first = null;
    TreeNode second = null;
    TreeNode cur = root;
    TreeNode pre_new = null;
    while (cur != null) {
        // 情况 1
        if (cur.left == null) {
            /*******************************************************/
            if (pre_new != null && cur.val < pre_new.val) {
                if (first == null) {
                    first = pre_new;
                    second = cur;
                } else {
                    second = cur;
                }
            }
            pre_new = cur;
            /*******************************************************/
            cur = cur.right;
        } else {
            // 找左子树最右边的节点
            TreeNode pre = cur.left;
            while (pre.right != null && pre.right != cur) {
                pre = pre.right;
            }
            // 情况 2.1
            if (pre.right == null) {
                pre.right = cur;
                cur = cur.left;
            }
            // 情况 2.2
            if (pre.right == cur) {
                pre.right = null; // 这里可以恢复为 null
                /*******************************************************/
                if (pre_new != null && cur.val < pre_new.val) {
                    if (first == null) {
                        first = pre_new;
                        second = cur;
                    } else {
                        second = cur;
                    }
                }
                pre_new = cur;
                /*******************************************************/
                cur = cur.right;
            }
        }
    }
    
    int temp = first.val;
    first.val = second.val;
    second.val = temp;
}

自己开始看到二分查找树,还是没有想到中序遍历,而是用了递归的思路去分析。可以看到如果想到中序遍历,题目会简单很多。

更多详细通俗题解详见 leetcode.wang

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容