五大经典算法之动态规划

一、概念起源

  动态规划,又名DP算法(取自其Dynamic Programming的缩写),最初是运筹学的一个分支,是用来求解决策过程最优化的数学方法。

二、基本思想

把 多阶段过程 转化为一系列单阶段过程,利用各阶段之间的关系,逐个求解。那什么叫多阶段过程呢?

多阶段过程:首先大家可以思考一下以下这个问题: 

假如我们有面值为1元/3元/5元的硬币若干枚,如何用最少的硬币凑够137元? 

当然我们可以使用暴力枚举解决这个问题,不够那样复杂度就太高了。我们可以这样考虑,凑齐137元可以看成一个最终目标,我们可以把它细分为先以最少的硬币数量凑齐136元(这样再加1元就137元了)或是133元或是132元 + 1次。然后我们的问题转变为了先以最少的硬币数量凑齐136元或是133元或是132元。看似问题数量变更多了,但是实际问题难度却变小了。 而且这种细分方式可以不断细分,一直细分到接近于0元。而在这个思维过程中,我们就是将解决137元的问题分阶段的完成,而这个过程就叫做 多阶段过程 。

三、解题步骤(思路)

1. 利用动态规划思想从上往下思考问题:将多阶段问题转变成更小的多阶段问题(状态转移方程)

2. 分解至最小的单阶段问题(可直接解决问题)。

3. 利用循环从下往上解决问题。

四、算法框架

相对于其他基本算法,动态规划算法比较灵活,其主体框架取决于其具体问题,具体问题决定具体的状态转移方程;因此,其不像回溯法有一套“亘古不变”的算法框架;所以以下的算法只能说是解决类似上述硬币问题的DP算法框架,只能算是给各位抛砖引玉。 

变量解释: 

res:存储各阶段问题的答案 

n:最终问题的标记位 

i:循环的索引 

f:某阶段问题的答案与前些阶段问题答案之间的函数关系

void dp(int n) {

  // 定义问题的解数组

  int res[n + 1];

  // 初始化最小的单阶段问题的解

  res[1] = 1 ...

  // 从初始化后的解数组的第一个位置开始循环计算res[i]

  int i = inital;

  while (i <= n) {

    // f函数取决于状态转移方程

    res[i] = f(res[i - 1], res[i - 2], res[i - 3]...);

    i++;

  }

  return res[n];

五、经典实现

经典问题:Best Time to Buy and Sell Stock 

Say you have an array for which the ith element is the price of a given stock on day i. 

If you were only permitted to complete at most one transaction (i.e., buy one and sell one share of the stock), design an algorithm to find the maximum profit. 

Note that you cannot sell a stock before you buy one. 

Example 1: 

Input: [7,1,5,3,6,4] 

Output: 5 

Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.

        Not 7-1 = 6, as selling price needs to be larger than buying price.

Example 2: Input: [7,6,4,3,1] Output: 0 Explanation: In this case, no transaction is done, i.e. max profit = 0.

int maxProfit(int* prices, int pricesSize) {

  if (pricesSize == 0) {

    return 0;

  }

  int res[pricesSize];

  int min[pricesSize];

  res[0] = 0;

  min[0] = prices[0];

  int i = 1;

  while (i < pricesSize) {

    if (res[i - 1] < prices[i] - min[i - 1]) {

      res[i] = prices[i] - min[i - 1];

    } else {

      res[i] = res[i - 1];

    }

    if (prices[i] < min[i - 1]) {

      min[i] = prices[i];

    } else {

      min[i] = min[i - 1];

    }

    i++;

  }

  return res[pricesSize - 1];

}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 226,333评论 6 524
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 97,345评论 3 411
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 173,869评论 0 370
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 61,897评论 1 305
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,790评论 6 404
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 54,288评论 1 318
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 42,449评论 3 433
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 41,579评论 0 282
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 48,092评论 1 329
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 40,080评论 3 352
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 42,192评论 1 362
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,767评论 5 354
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 43,491评论 3 342
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,860评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 35,070评论 1 278
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,793评论 3 385
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 47,218评论 2 369

推荐阅读更多精彩内容