spark 三种运行部署方式:
1.yarn模式
2.standalone
3.Mesos
=====================================================================
1.standalone模式
与MapReduce1.0框架类似,Spark框架本身也自带了完整的资源调度管理服务,可以独立部署到一个集群中,而不需要依赖其他系统来为其提供资源管理调度服务。在架构的设计上,Spark与MapReduce1.0完全一致,都是由一个Master和若干个Slave构成,并且以槽(slot)作为资源分配单位。不同的是,Spark中的槽不再像MapReduce1.0那样分为Map 槽和Reduce槽,而是只设计了统一的一种槽提供给各种任务来使用。
2.Spark on Mesos模式
Mesos是一种资源调度管理框架,可以为运行在它上面的Spark提供服务。Spark on Mesos模式中,Spark程序所需要的各种资源,都由Mesos负责调度。由于Mesos和Spark存在一定的血缘关系,因此,Spark这个框架在进行设计开发的时候,就充分考虑到了对Mesos的充分支持,因此,相对而言,Spark运行在Mesos上,要比运行在YARN上更加灵活、自然。目前,Spark官方推荐采用这种模式,所以,许多公司在实际应用中也采用该模式。
3. Spark on YARN模式
Spark可运行于YARN之上,与Hadoop进行统一部署,即“Spark on YARN”,其架构如图9-13所示,资源管理和调度依赖YARN,分布式存储则依赖HDFS。