elasticsear analyzer
什么是Analysis
顾名思义,文本分析就是把全文本转换成一系列单词(term/token)的过程,也叫分词。在 ES 中,Analysis 是通过分词器(Analyzer) 来实现的,可使用 ES 内置的分析器或者按需定制化分析器。
比如输入的文本是thinking in elasticsearch
,通过分词器,可以分成三个单词,分别是thinking, in, elasticsearch
,
分词器的组成
- Character Filters: 针对原始文本处理,比如去除 html 标签
- Tokenizer: 按照规则切分为单词,比如按照空格切分
- Token Filter: 将切分的单词进行加工,比如大写转小写,删除 stopwords,增加同义语
同时 Analyzer 三个部分也是有顺序的,从上到下依次经过 Character Filters
,Tokenizer
以及 Token Filters
,这个顺序比较好理解,一个文本进来,需要先经过Character Filters
进行文本数据处理,然后进入Tokenizer
进行分词操作,最后对分词的结果进行过滤。
Elasticsearch内置分词器
Standard Analyzer
elasticsearch内置的标准分词器,如果没有指定,这就是默认选择的分词器。
按词分配,支持多种语言
小写处理,它删除大多数标点符号、小写术语,并支持指定需要删除的词语。
Standard Tokenizer
Lower Case Token Filter
-
Stop Token Filter (默认是禁止使用的)
-
默认需要删除的词语有:
a
,an
,and
,are
,as
,at
,be
,but
,by
,for
,if
,in
,into
,is
,it
,no
,not
,of
,on
,or
,such
,that
,the
,their
,then
,there
,these
,they
,this
,to
,was
,will
,with
-
Simple Analyzer
- 小写处理
- 如果文本中包含了非字母字符(数字,撇号,空格,连字符等),则会丢弃。
- Lower Case Token Filter
Whitespace Analyzer
- 按照空格切分
- Whitespace Filter
Stop Analyzer
- 相比Simple Analyzer多了Stop Filter,会把
a
,an
,and
,are
,as
,at
,be
,but
,by
,for
,if
,in
,into
,is
,it
,no
,not
,of
,on
,or
,such
,that
,the
,their
,then
,there
,these
,they
,this
,to
,was
,will
,with
等修饰词去除。
Keyword Analyzer
- 不分词,直接将输入当一个term输出
- Keyword Filter
Pattern Analyzer
- 通过正则表达式进行分词。
- 默认是
\W+
,非字符的符号进行隔离 - Pattern Tokenizer
- Lower Case Token Filter
- Stop Token Filter(disable by default)
Language Analyzer
A set of analyzers aimed at analyzing specific language text. The following types are supported: arabic
, armenian
, basque
, bengali
, brazilian
, bulgarian
, catalan
, cjk
, czech
, danish
, dutch
, english
, estonian
, finnish
, french
, galician
, german
, greek
, hindi
, hungarian
, indonesian
, irish
, italian
, latvian
, lithuanian
, norwegian
, persian
, portuguese
, romanian
, russian
, sorani
, spanish
, swedish
, turkish
, thai
.
Fingerprint Analyzer
- 指纹分词器,转小写,删除扩展字符,排序,删除重复字符
Custom Analyzer
中文分词的难点
- 中文句子,切分成一个个词(不是一个个子)
- 英文中,单词与单词之间有空格作为分割,而中文的语句中,词与词没有什么可以自然分割的。
- 一些中文语句,在不同的上下文中有不同的理解
- 这个苹果,不大好吃/这个苹果,不大,好吃
中文分词器
ICU Analyzer
- 需要安装plugin
Elasticsearch-plugin install analysis-icu
- 提供了unicode的支持,更好的支持亚洲语言
Normalization Character Filter
ICU Tokenizer
Normalization Token Filter
Folding Token Filter
Collation Token Filter
Transform Token Filter
IK Analyzer
- 基于java语言开发的轻量级的中文分词工具包
- 支持自定义词库,支持热更新分词字典。
- 支持细粒度和智能分词两种切分模式。
- https://github.com/medcl/elasticsearch-analysis-ik
参考资料:medcl github,提供了很多custom analyzer
分词器API
Standard Analyzer
- 默认配置
语句:
post _analyze
{
"analyzer": "standard",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
结果:
{
"tokens" : [
{
"token" : "the",
"start_offset" : 0,
"end_offset" : 3,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "2",
"start_offset" : 4,
"end_offset" : 5,
"type" : "<NUM>",
"position" : 1
},
{
"token" : "quick",
"start_offset" : 6,
"end_offset" : 11,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "brown",
"start_offset" : 12,
"end_offset" : 17,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "foxes",
"start_offset" : 18,
"end_offset" : 23,
"type" : "<ALPHANUM>",
"position" : 4
},
{
"token" : "jumped",
"start_offset" : 24,
"end_offset" : 30,
"type" : "<ALPHANUM>",
"position" : 5
},
{
"token" : "over",
"start_offset" : 31,
"end_offset" : 35,
"type" : "<ALPHANUM>",
"position" : 6
},
{
"token" : "the",
"start_offset" : 36,
"end_offset" : 39,
"type" : "<ALPHANUM>",
"position" : 7
},
{
"token" : "lazy",
"start_offset" : 40,
"end_offset" : 44,
"type" : "<ALPHANUM>",
"position" : 8
},
{
"token" : "dog's",
"start_offset" : 45,
"end_offset" : 50,
"type" : "<ALPHANUM>",
"position" : 9
},
{
"token" : "bone",
"start_offset" : 51,
"end_offset" : 55,
"type" : "<ALPHANUM>",
"position" : 10
}
]
}
- 修改配置,启用stop token filter
语句:
PUT standard-demo
{
"settings": {
"analysis": {
"analyzer": {
"my_english_analyzer": {
"type": "standard",
"max_token_length": 5,
"stopwords": "_english_"
}
}
}
}
}
POST standard-demo/_analyze
{
"analyzer": "my_english_analyzer",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
结果:
{
"tokens" : [
{
"token" : "2",
"start_offset" : 4,
"end_offset" : 5,
"type" : "<NUM>",
"position" : 1
},
{
"token" : "quick",
"start_offset" : 6,
"end_offset" : 11,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "brown",
"start_offset" : 12,
"end_offset" : 17,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "foxes",
"start_offset" : 18,
"end_offset" : 23,
"type" : "<ALPHANUM>",
"position" : 4
},
{
"token" : "jumpe",
"start_offset" : 24,
"end_offset" : 29,
"type" : "<ALPHANUM>",
"position" : 5
},
{
"token" : "d",
"start_offset" : 29,
"end_offset" : 30,
"type" : "<ALPHANUM>",
"position" : 6
},
{
"token" : "over",
"start_offset" : 31,
"end_offset" : 35,
"type" : "<ALPHANUM>",
"position" : 7
},
{
"token" : "lazy",
"start_offset" : 40,
"end_offset" : 44,
"type" : "<ALPHANUM>",
"position" : 9
},
{
"token" : "dog's",
"start_offset" : 45,
"end_offset" : 50,
"type" : "<ALPHANUM>",
"position" : 10
},
{
"token" : "bone",
"start_offset" : 51,
"end_offset" : 55,
"type" : "<ALPHANUM>",
"position" : 11
}
]
}
Simple Analyzer
语句:
POST _analyze
{
"analyzer": "simple",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
结果:
{
"tokens" : [
{
"token" : "the",
"start_offset" : 0,
"end_offset" : 3,
"type" : "word",
"position" : 0
},
{
"token" : "quick",
"start_offset" : 6,
"end_offset" : 11,
"type" : "word",
"position" : 1
},
{
"token" : "brown",
"start_offset" : 12,
"end_offset" : 17,
"type" : "word",
"position" : 2
},
{
"token" : "foxes",
"start_offset" : 18,
"end_offset" : 23,
"type" : "word",
"position" : 3
},
{
"token" : "jumped",
"start_offset" : 24,
"end_offset" : 30,
"type" : "word",
"position" : 4
},
{
"token" : "over",
"start_offset" : 31,
"end_offset" : 35,
"type" : "word",
"position" : 5
},
{
"token" : "the",
"start_offset" : 36,
"end_offset" : 39,
"type" : "word",
"position" : 6
},
{
"token" : "lazy",
"start_offset" : 40,
"end_offset" : 44,
"type" : "word",
"position" : 7
},
{
"token" : "dog",
"start_offset" : 45,
"end_offset" : 48,
"type" : "word",
"position" : 8
},
{
"token" : "s",
"start_offset" : 49,
"end_offset" : 50,
"type" : "word",
"position" : 9
},
{
"token" : "bone",
"start_offset" : 51,
"end_offset" : 55,
"type" : "word",
"position" : 10
}
]
}
Stop Analyzer
语句:
POST _analyze
{
"analyzer": "stop",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
结果:
{
"tokens" : [
{
"token" : "quick",
"start_offset" : 6,
"end_offset" : 11,
"type" : "word",
"position" : 1
},
{
"token" : "brown",
"start_offset" : 12,
"end_offset" : 17,
"type" : "word",
"position" : 2
},
{
"token" : "foxes",
"start_offset" : 18,
"end_offset" : 23,
"type" : "word",
"position" : 3
},
{
"token" : "jumped",
"start_offset" : 24,
"end_offset" : 30,
"type" : "word",
"position" : 4
},
{
"token" : "over",
"start_offset" : 31,
"end_offset" : 35,
"type" : "word",
"position" : 5
},
{
"token" : "lazy",
"start_offset" : 40,
"end_offset" : 44,
"type" : "word",
"position" : 7
},
{
"token" : "dog",
"start_offset" : 45,
"end_offset" : 48,
"type" : "word",
"position" : 8
},
{
"token" : "s",
"start_offset" : 49,
"end_offset" : 50,
"type" : "word",
"position" : 9
},
{
"token" : "bone",
"start_offset" : 51,
"end_offset" : 55,
"type" : "word",
"position" : 10
}
]
}
自定义过滤条件:
PUT stop-demo
{
"settings": {
"analysis": {
"analyzer": {
"my_stop_analyzer": {
"type": "stop",
"stopwords": ["the", "over"]
}
}
}
}
}
POST stop-demo/_analyze
{
"analyzer": "my_stop_analyzer",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
结果:
{
"tokens" : [
{
"token" : "quick",
"start_offset" : 6,
"end_offset" : 11,
"type" : "word",
"position" : 1
},
{
"token" : "brown",
"start_offset" : 12,
"end_offset" : 17,
"type" : "word",
"position" : 2
},
{
"token" : "foxes",
"start_offset" : 18,
"end_offset" : 23,
"type" : "word",
"position" : 3
},
{
"token" : "jumped",
"start_offset" : 24,
"end_offset" : 30,
"type" : "word",
"position" : 4
},
{
"token" : "lazy",
"start_offset" : 40,
"end_offset" : 44,
"type" : "word",
"position" : 7
},
{
"token" : "dog",
"start_offset" : 45,
"end_offset" : 48,
"type" : "word",
"position" : 8
},
{
"token" : "s",
"start_offset" : 49,
"end_offset" : 50,
"type" : "word",
"position" : 9
},
{
"token" : "bone",
"start_offset" : 51,
"end_offset" : 55,
"type" : "word",
"position" : 10
}
]
}
Keyword Analyzer
语句:
POST _analyze
{
"analyzer": "keyword",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
结果:
{
"tokens" : [
{
"token" : "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
"start_offset" : 0,
"end_offset" : 56,
"type" : "word",
"position" : 0
}
]
}
Pattern Analyzer
语句:
POST _analyze
{
"analyzer": "pattern",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
结果:
{
"tokens" : [
{
"token" : "the",
"start_offset" : 0,
"end_offset" : 3,
"type" : "word",
"position" : 0
},
{
"token" : "2",
"start_offset" : 4,
"end_offset" : 5,
"type" : "word",
"position" : 1
},
{
"token" : "quick",
"start_offset" : 6,
"end_offset" : 11,
"type" : "word",
"position" : 2
},
{
"token" : "brown",
"start_offset" : 12,
"end_offset" : 17,
"type" : "word",
"position" : 3
},
{
"token" : "foxes",
"start_offset" : 18,
"end_offset" : 23,
"type" : "word",
"position" : 4
},
{
"token" : "jumped",
"start_offset" : 24,
"end_offset" : 30,
"type" : "word",
"position" : 5
},
{
"token" : "over",
"start_offset" : 31,
"end_offset" : 35,
"type" : "word",
"position" : 6
},
{
"token" : "the",
"start_offset" : 36,
"end_offset" : 39,
"type" : "word",
"position" : 7
},
{
"token" : "lazy",
"start_offset" : 40,
"end_offset" : 44,
"type" : "word",
"position" : 8
},
{
"token" : "dog",
"start_offset" : 45,
"end_offset" : 48,
"type" : "word",
"position" : 9
},
{
"token" : "s",
"start_offset" : 49,
"end_offset" : 50,
"type" : "word",
"position" : 10
},
{
"token" : "bone",
"start_offset" : 51,
"end_offset" : 55,
"type" : "word",
"position" : 11
}
]
}
自定义正则表达式:
PUT pattern-demo
{
"settings": {
"analysis": {
"analyzer": {
"my_email_analyzer": {
"type": "pattern",
"pattern": "\\W|_",
"lowercase": true
}
}
}
}
}
POST pattern-demo/_analyze
{
"analyzer": "my_email_analyzer",
"text": "John_Smith@foo-bar.com"
}
结果:
{
"tokens" : [
{
"token" : "john",
"start_offset" : 0,
"end_offset" : 4,
"type" : "word",
"position" : 0
},
{
"token" : "smith",
"start_offset" : 5,
"end_offset" : 10,
"type" : "word",
"position" : 1
},
{
"token" : "foo",
"start_offset" : 11,
"end_offset" : 14,
"type" : "word",
"position" : 2
},
{
"token" : "bar",
"start_offset" : 15,
"end_offset" : 18,
"type" : "word",
"position" : 3
},
{
"token" : "com",
"start_offset" : 19,
"end_offset" : 22,
"type" : "word",
"position" : 4
}
]
}
Language Analyzer(English Analyzer)
语句:
POST _analyze
{
"analyzer": "english",
"text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone."
}
结果:
{
"tokens" : [
{
"token" : "2",
"start_offset" : 4,
"end_offset" : 5,
"type" : "<NUM>",
"position" : 1
},
{
"token" : "quick",
"start_offset" : 6,
"end_offset" : 11,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "brown",
"start_offset" : 12,
"end_offset" : 17,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "fox",
"start_offset" : 18,
"end_offset" : 23,
"type" : "<ALPHANUM>",
"position" : 4
},
{
"token" : "jump",
"start_offset" : 24,
"end_offset" : 30,
"type" : "<ALPHANUM>",
"position" : 5
},
{
"token" : "over",
"start_offset" : 31,
"end_offset" : 35,
"type" : "<ALPHANUM>",
"position" : 6
},
{
"token" : "lazi",
"start_offset" : 40,
"end_offset" : 44,
"type" : "<ALPHANUM>",
"position" : 8
},
{
"token" : "dog",
"start_offset" : 45,
"end_offset" : 50,
"type" : "<ALPHANUM>",
"position" : 9
},
{
"token" : "bone",
"start_offset" : 51,
"end_offset" : 55,
"type" : "<ALPHANUM>",
"position" : 10
}
]
}
ICU Analyzer
语句:
POST _analyze
{
"analyzer": "icu_analyzer",
"text": "他说的确实在理"
}
结果:
{
"tokens" : [
{
"token" : "他",
"start_offset" : 0,
"end_offset" : 1,
"type" : "<IDEOGRAPHIC>",
"position" : 0
},
{
"token" : "说的",
"start_offset" : 1,
"end_offset" : 3,
"type" : "<IDEOGRAPHIC>",
"position" : 1
},
{
"token" : "确实",
"start_offset" : 3,
"end_offset" : 5,
"type" : "<IDEOGRAPHIC>",
"position" : 2
},
{
"token" : "在",
"start_offset" : 5,
"end_offset" : 6,
"type" : "<IDEOGRAPHIC>",
"position" : 3
},
{
"token" : "理",
"start_offset" : 6,
"end_offset" : 7,
"type" : "<IDEOGRAPHIC>",
"position" : 4
}
]
}