【R语言】共享单车测算用户满意程度&AB测试

一、分析需求

1.对共享单车满意度评分数据进行清洗,去除空缺值等

2.对用户满意度分数的整体情况进行分析

3.对于收押金这一举措,用AB测试思路来检测收押金是否会影响用户满意度

二、数据情况(实验数据)

北京四个城区调研客户对共享单车的满意程度,并分为了对照组和实验组,分别对收押金前后的满意程度进行了统计


三、分析过程

1.清洗数据填补空值

对数据进行整理清理,其中分数有些许空缺值,填补缺失值采用的统计量是去除空值后的分数的平均值,填补缺失值大小是5.458333,实现语句:

setwd("C:/Users/emera/Desktop/共享单车评分数据")

R_homework <-

read.csv("共享单车评分数据.csv",fileEncoding ="UTF-8-BOM")

#查看数据整体情况

str(R_homework)

#查看是否有空值

is.na(R_homework$城区)

is.na(R_homework$分数)

is.na(R_homework$组别)

is.na(R_homework$推荐者)

is.na(R_homework$年龄)

#填充空值

alternative_value<-

mean(R_homework$分数,na.rm = TRUE)

R_homework[is.na(R_homework$分数), "分数"] <-alternative_value

is.na(R_homework$分数)

2.对分数整体显现情况进行初步分析

从直方图中可以看出,朝阳区和东城区给出8分的用户最多,西城区给出7分的用户最多。海淀区分数两级分化情况比较严重,给最多的分数是9分和3分,同时高分(分数7分以上)数量比其他区域高,但低分(3分以下)的数量也很高。


从箱型图中我们可以进一步看出,朝阳区、东城区、西城区用户的平均分相近,海淀区平均分最高,但是海淀区的分数也是最分散的。从小提琴图中,我们可以看到西城区高分面积最大,低分面积最小,海淀区呈现两极分化的葫芦形,东城区各分数段数量分布比较均匀,朝阳区数据离散度较小。

实现语句:

#直方图

library(ggplot2)

a <-

ggplot(R_homework,aes(分数))

a +geom_histogram(binwidth = 1)

facet_wrap(~城区,nrow=2,ncol=2)+

#箱型图

b <-

ggplot(R_homework,aes(城区,分数))

b + geom_boxplot()

#小提琴图

c <-

ggplot(R_homework,aes(城区,分数))

c +geom_violin(draw_quantiles = c(0.25,0.5,0.75))

3.各个城区用户给分和年龄关系分析

我们对散点图进行线性拟合。从图中可以看出,各个区域的样本取样较为随机,不存在某一年龄段取样集中的不合理现象。对图形进行观察,发现拟合程度都近似,各个区域打分均表现出和年龄的正相关性。其中朝阳区和东城区的拟合情况最为集中,海淀区和西城区的拟合函数更为陡峭(斜率更高)。有趣的是,各个区域25-30岁的用户打分都在拟合函数之上,25岁以下和30岁以上大多在拟合函数之下。也就是说如果我们用拟合函数最各年龄段的满意度预估,25-30岁区间的满意度更有可能高于预估值,25岁以下和30岁以上区间的满意度更有可能低于预估值。

实现语句:

#散点图拟合年龄和分数关系

g <-

ggplot(R_homework,aes(年龄,分数))

g + geom_point(alpha =0.25)+

geom_smooth(method='lm',col='red')+

theme_bw(base_family= "Avenir",base_size = 15)+

  facet_wrap(~城区,nrow=2,ncol=2)+

  labs(x='年龄(age)')+

  labs(y='分数(score)')+

  labs(title='用户满意度调查(分数与年龄关系)')

4.对“收押金”措施是否对西城区用户满意分有显著影响设计A/B测试

1.原假设H0,发红包对提升用户满意分没有影响,即未发红包对照组满意分均值X1=发红包实验组满意分均值X2

备选假设H1,发红包可对用户满意分有显著影响,即未发红包对照组满意分均值X1=!发红包实验组满意分均值X2

因为假设是问是否有显著影响,好的影响和不好的影响都包含在此假设内,因此采用双侧检测。

2.使用函数t.test()计算P值。

实现方式:

Ttestdata <-read.csv("Ttestdata.csv")

scoreA <-

Ttestdata[Ttestdata$"组别"=="对照组"&Ttestdata$"城区"=="西城区", "分数"]

scoreB <-

Ttestdata[Ttestdata$"组别"=="实验组"&Ttestdata$"城区"=="西城区", "分数"]

#进行T检测

t.test(scoreA,scoreB,alternative= ("two.sided"),conf.level = 0.95)

计算结果:

data:  scoreA and scoreB

t = 0.2778, df = 20.926,p-value = 0.7839

alternative hypothesis:true difference in means is not equal to 0

95 percent confidenceinterval:

 -2.079380 2.720406

sample estimates:

mean of x mean of y

 5.153846 4.833333

3.按照显著性水平α=0.05看,P值0.78大于0.05,所以原假设H0成立,不能证明收押金对用户满意分有显著影响

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,277评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,689评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,624评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,356评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,402评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,292评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,135评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,992评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,429评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,636评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,785评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,492评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,092评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,723评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,858评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,891评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,713评论 2 354

推荐阅读更多精彩内容