空转工具推荐 | 10款空间转录组去卷积工具的综合比较

在年初做盘点季的时候小编已经为大家总结了👉 空转去卷积常用工具合辑,这些工具的性能如何?做分析的时候要怎么选择?近日,Briefings in Bioinformatics》发表了综述文章,回顾了ST去卷积的最新方法,并综合评估了10种方法的性能。

为ST数据的细胞类型去卷积开发的计算方法

近年来,提出了多种ST去卷积方法。ST数据的现有去卷积方法大致可分为三类:概率方法、基于非负矩阵分解(NMF)和非负最小二乘(NNLS)的方法以及其他方法:1)概率方法,包括Adroit、cell2location、DestVI、RCTD、STdeconvolve和stereoscope,其中明确或参数化指定数据分布,并使用基于似然的方法进行推理。2)基于非负矩阵分解和神经网络分解的方法,包括spatialDWLS和SPOTlight。3)其他方法包括DSTG和Tangram,使用一些专门设计的方法架构或损失函数来估计细胞类型比例。


ST去卷积方法性能的综合测试

研究人员使用了三种组织的ST数据来评估上述10种方法的性能。对于性能量化其使用了三个指标:均方根误差(RMSE)、跨细胞类型的距离相关性以及每种细胞类型与真实值的差异。均方根误差越小,距离相关性越高,与真实值的差异越小,都表明性能越好。

小鼠嗅球 (MOB) 数据:综合内部和外部参考所观察到的模式,结果表明RCTD、cell2location和stereoscope是对参考scRNA-seq和目标ST数据之间的批次效应最稳健的

人类心脏的发育数据:当使用内部参考(即ISS单细胞)对ISS数据构建的伪点进行去卷积时,Adroit、RCTD、stereoscope、DSTG和Tangram显示出优越的性能,与在MOB数据中的观察结果相似,但这里的基因数量要少得多;当使用外部参考时,只有RCTD和stereoscope能够捕捉细胞类型的预期空间分布。总体来说,除了DestVI和Tangram未能捕捉到某些层的主要细胞类型外,其他方法的表现都比较好。其中,stereoscope、cell2location和RCTD与ISS细胞组成的一致性较高。

小鼠初级体感皮层区域数据:大多数方法尤其是Tangram和DSTG,在使用完全匹配的内部引用时都能获得优异的性能。通过内部参考,Adroit、cell2location、RCTD和stereoscope仍然提供了令人满意的细胞类型比例估计,尽管可用的基因数量有限。当使用外部参考时,无论基因数量和平台如何,RCTD和stereoscope都优于其他方法。当有足够数量的基因时,Cell2location在ST和Visium数据上表现相当好。


综上,RCTD和stereoscope在不同组织中表现出较高的稳定性和准确性。STdeconvolve作为唯一的无参考方法,具有识别组织结构和细胞混合物的能力,但必须仔细处理细胞类型映射。本篇综述的科研团队全面评估了各种场景,包括不同的组织、不同的技术和数据分辨率、不同数量的单细胞和斑点,以及用于分析的不同数量和类型的基因。根据其结果,建议研究人员首先确定一些最符合自己数据的评估场景,并在这些场景下选择性能最佳的方法。参考值的选择,最好是从仔细匹配的组织和生物样本中选择,对于ST数据的去卷积也是必不可少的。不匹配的scRNA-seq参照物或有不准确注释的细胞的参照物会严重影响去卷积性能。此外,在本综述范围之外,对噪声和高维ST数据进行去噪和降维可以实现更有效的信息提取。研究团队还预计,细胞型去卷积将进一步受益于有效去噪和降低ST数据维数的方法的发展和进步。

//

建议对测试细节感兴趣的小伙伴参考文献原文~也可以访问如下链接了解详情

👉https://github.com/JiawenChenn/St-review  


参考文献

Chen J, Liu W, Luo T, et al. A comprehensive comparison on cell-type composition inference for spatial transcriptomics data. Brief Bioinform. 2022 Jun 27:bbac245. 

图片均来源于参考文献,如有侵权请联系删除。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容