ClickHouse数据一致性

即便对数据一致性支持最好的Mergetree,也只是保证最终一致性:

我们在使用 ReplacingMergeTree、SummingMergeTree 这类表引擎的时候,会出现短暂数据不一致的情况。在某些对一致性非常敏感的场景,通常有以下的解决方案。

1.准备测试表和数据

建表

CREATE TABLE test_a(
  user_id UInt64,
  score String,
  deleted UInt8 DEFAULT 0,
  create_time DateTime DEFAULT toDateTime(0)
)ENGINE= ReplacingMergeTree(create_time)
ORDER BY user_id;

其中:
user_id 是数据去重更新的标识;create_time 是版本号字段,每组数据中 create_time 最大的一行表示最新的数据;,deleted 是自定的一个标记位,比如 0 代表未删除,1 代表删除数据。

写入1000W数据:

INSERT INTO TABLE test_a(user_id,score)
WITH(
  SELECT ['A','B','C','D','E','F','G']
)AS dict
SELECT number AS user_id, dict[number%7+1] FROM numbers(10000000);

修改前 50万 行数据,修改内容包括 name 字段和 create_time 版本号字段

INSERT INTO TABLE test_a(user_id,score,create_time)
WITH(
  SELECT ['AA','BB','CC','DD','EE','FF','GG']
)AS dict
SELECT number AS user_id, dict[number%7+1], now() AS create_time FROM numbers(500000);

统计总数

select count() test_a;

发现有10500000条数据,没有去重。

2.手动optimize

在写入数据后,立刻执行OPTIMIZE强制触发新写入分区的合并动作。生产环境不建议使用,使用 OPTIMIZE 会阻塞别人进行数据写入,性能开销大;

OPTIMIZE TABLE test_a FINAL;

语法:

OPTIMIZE TABLE [db.]name [ON CLUSTER cluster] [PARTITION partition | PARTITION ID 'partition_id'] [FINAL] [DEDUPLICATE [BY expression]]

final指合并时取最新的。

3.通过 Group by 去重

执行去重的查询,利用删除标记

SELECT
  user_id ,
  argMax(score, create_time) AS score,
  argMax(deleted, create_time) AS deleted,
  max(create_time) AS ctime
FROM test_a
GROUP BY user_id
HAVING deleted = 0;

argMax(field1,field2):按照 field2 的最大值取 field1 的值,当我们更新数据时,会写入一行新的数据,例如上面语句中,通过查询最大的 create_time 得到修改后的score字段值。

创建视图,方便测试

CREATE VIEW view_test_a AS
SELECT
  user_id ,
  argMax(score, create_time) AS score,
  argMax(deleted, create_time) AS deleted,
  max(create_time) AS ctime
FROM test_a
GROUP BY user_id
HAVING deleted = 0;

插入重复数据,再次查询

#再次插入一条数据
INSERT INTO TABLE test_a(user_id,score,create_time) VALUES(0,'AAAA',now())
 
#再次查询
SELECT *
FROM view_test_a
WHERE user_id = 0;

删除数据测试

#再次插入一条标记为删除的数据
INSERT INTO TABLE test_a(user_id,score,deleted,create_time) VALUES(0,'AAAA',1,now());

#再次查询,刚才那条数据看不到了
SELECT *
FROM view_test_a
WHERE user_id = 0;

这行数据并没有被真正的删除,而是被过滤掉了。在一些合适的场景下,可以结合 表级别的 TTL 最终将物理数据删除。

4.通过 FINAL 查询

在查询语句后增加FINAL修饰符,这样在查询的过程中将会执行Merge的特殊逻辑(例如数据去重,预聚合等)。但是这种方法在早期版本基本没有人使用,因为在增加 FINAL之后,我们的查询将会变成一个单线程的执行过程,查询速度非常慢。在v20.5.2.7-stable版本中,FINAL查询支持多线程执行,并且可以通过max_final_threads 参数控制单个查询的线程数。但是目前读取part部分的动作依然是串行的。FINAL查询最终的性能和很多因素相关,列字段的大小、分区的数量等等都会影响到最终的查询时间,所以还要结合实际场景取舍。参考链接:https://github.com/ClickHouse/ClickHouse/pull/10463 使用hits_v1表进行测试:

新版本测试
普通语句查询

select *
from datasets.visits_v1
WHERE StartDate = '2014-03-17'
limit 100
settings
max_threads = 2;

查看执行计划:

explain pipeline
select *
from datasets.visits_v1
WHERE StartDate = '2014-03-17'
limit 100
settings
max_threads = 2; 

(Expression)
ExpressionTransform × 2
  (SettingQuotaAndLimits)
    (Limit)
    Limit 2 → 2
      (ReadFromMergeTree)
      MergeTreeThread × 2 0 → 1

明显将由2个线程并行读取 part 查询。

select *
from datasets.visits_v1 final
WHERE StartDate = '2014-03-17'
limit 100
settings
max_final_threads = 2;

查询速度没有普通的查询快,但是相比之前已经有了一些提升,查看 FINAL 查询的执行计划:

explain pipeline select * from datasets.visits_v1 final WHERE StartDate = '2014-03-17' limit 100  settings max_final_threads = 2;
(Expression)
ExpressionTransform × 2
  (SettingQuotaAndLimits)
    (Limit)
    Limit 2 → 2
      (ReadFromMergeTree)
      ExpressionTransform × 2
        CollapsingSortedTransform × 2
          Copy 1 → 2
            AddingSelector
              ExpressionTransform
                MergeTree 0 → 1

从CollapsingSortedTransform这一步开始已经是多线程执行,但是读取 part 部分的动作还是串行。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,366评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,521评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,689评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,925评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,942评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,727评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,447评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,349评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,820评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,990评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,127评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,812评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,471评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,017评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,142评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,388评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,066评论 2 355

推荐阅读更多精彩内容