Flink Operators

https://ci.apache.org/projects/flink/flink-docs-release-1.7/dev/stream/operators/

Operator 作用 流的转换
map 将一个元素转换成另外一个元素 DataStream → DataStream本
flapmap 将几个的一个元素转换为零个,一个或者多个 DataStream → DataStream
filter 保留集合中返回true的元素 DataStream → DataStream
keyBy 对数据流进行逻辑分区,相同的key在同一分区 DataStream → KeyedStream
reduce 遍历集合,依次合并元素最终生产一个元素 KeyedStream → DataStream
fold 遍历结合从第一个元素到最后一个元素依次连接起来 KeyedStream → DataStream
Aggregations emmmm KeyedStream → DataStream
Window 基于已经分区的stream,将元素划分窗口 KeyedStream → WindowedStream
WindowAll 基于未分区的stream,将所有元素集中到一个task DataStream → AllWindowedStream
Apply(Window) 自定义函数处理窗口内所有的元素 WindowedStream → DataStream AllWindowedStream → DataStream
Window Reduce 窗口内所有元素reduce到一个结果 WindowedStream → DataStream
Window Fold 同stream的fold WindowedStream → DataStream
Aggregations on windows 同stream的Aggregations WindowedStream → DataStream
Union 将两个流合并 DataStream* → DataStream
Window Join 两个流join成一个流,指定分区key,在指定window,窗口是必须的 DataStream,DataStream → DataStream
Interval Join 流2 join 流1中一段时间的元素 KeyedStream,KeyedStream → DataStream
Window CoGroup 双流join,指定窗口 DataStream,DataStream → DataStream
Connect 联合两个流,保留各种state DataStream,DataStream → ConnectedStreams
CoMap, CoFlatMap 同map, CoFlatMap ConnectedStreams → DataStream
Split 流拆分 DataStream → SplitStream
Select 从SplitStream分离出DataStream SplitStream → DataStream
Iterate - DataStream → IterativeStream → DataStream
- - -
Extract Timestamps 设置event time DataStream → DataStream
  • map 将每个元素乘以2
DataStream<Integer> dataStream = //...
dataStream.map(new MapFunction<Integer, Integer>() {
    @Override
    public Integer map(Integer value) throws Exception {
        return 2 * value;
    }
});
  • flatMap 单词分隔
dataStream.flatMap(new FlatMapFunction<String, String>() {
    @Override
    public void flatMap(String value, Collector<String> out)
        throws Exception {
        for(String word: value.split(" ")){
            out.collect(word);
        }
    }
});
  • filter 保留value=0的元素
dataStream.filter(new FilterFunction<Integer>() {
    @Override
    public boolean filter(Integer value) throws Exception {
        return value != 0;
    }
});
  • keyby
dataStream.keyBy("someKey") // Key by field "someKey"
dataStream.keyBy(0) // Key by the first element of a Tuple
  • reduce 求和
keyedStream.reduce(new ReduceFunction<Integer>() {
    @Override
    public Integer reduce(Integer value1, Integer value2)
    throws Exception {
        return value1 + value2;
    }
});
  • fold
    A fold function that, when applied on the sequence (1,2,3,4,5), emits the sequence "start-1", "start-1-2", "start-1-2-3", ..
DataStream<String> result =
  keyedStream.fold("start", new FoldFunction<Integer, String>() {
    @Override
    public String fold(String current, Integer value) {
        return current + "-" + value;
    }
  });
  • Aggregations
keyedStream.sum(0);
keyedStream.sum("key");
keyedStream.min(0);
keyedStream.min("key");
keyedStream.max(0);
keyedStream.max("key");
keyedStream.minBy(0);
keyedStream.minBy("key");
keyedStream.maxBy(0);
keyedStream.maxBy("key");
  • Window Join
dataStream.join(otherStream)
    .where(<key selector>).equalTo(<key selector>)
    .window(TumblingEventTimeWindows.of(Time.seconds(3)))
    .apply (new JoinFunction () {...});
  • Interval Join
// this will join the two streams so that
// key1 == key2 && leftTs - 2 < rightTs < leftTs + 2
keyedStream.intervalJoin(otherKeyedStream)
    .between(Time.milliseconds(-2), Time.milliseconds(2)) // lower and upper bound
    .upperBoundExclusive(true) // optional
    .lowerBoundExclusive(true) // optional
    .process(new IntervalJoinFunction() {...});
  • Split
SplitStream<Integer> split = someDataStream.split(new OutputSelector<Integer>() {
    @Override
    public Iterable<String> select(Integer value) {
        List<String> output = new ArrayList<String>();
        if (value % 2 == 0) {
            output.add("even");
        }
        else {
            output.add("odd");
        }
        return output;
    }
});
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • 首先需要编程应用的四层抽象: 最底下的一层对用户是不可见的, 通过ProcessFunction集成到DataSt...
    君剑阅读 4,562评论 0 1
  • Real-time analytics is currently an important issue. Many...
    zh_harry阅读 3,385评论 0 2
  • 其实参加这个写作训练营呢,是因为我报名了19年的青橙学院,那么我为什么会报名19年的青橙学院呢,是因为被弘丹老师的...
    落微月阅读 1,688评论 0 0
  • 好冷的天气,想必谁也不会有自愿早起的积极性。 英惠这样想着,把头又往还算温暖的被窝里缩了缩,等待下一次闹钟响起。突...
    Gooday876阅读 3,532评论 0 1
  • 今天参加泰安市第九届中小学新道德教育主题班会的抽签培训,进门,竟然与孙明霞主任不期而遇。就坐即知,今日给各路...
    小蓓zz阅读 4,440评论 7 3

友情链接更多精彩内容