533. Lonely Pixel II

Given a picture consisting of black and white pixels, and a positive integer N, find the number of black pixels located at some specific row R and column C that align with all the following rules:
Row R and column C both contain exactly N black pixels.
For all rows that have a black pixel at column C, they should be exactly the same as row R
The picture is represented by a 2D char array consisting of 'B' and 'W', which means black and white pixels respectively.

Example:
Input:                                            
[['W', 'B', 'W', 'B', 'B', 'W'],    
 ['W', 'B', 'W', 'B', 'B', 'W'],    
 ['W', 'B', 'W', 'B', 'B', 'W'],    
 ['W', 'W', 'B', 'W', 'B', 'W']] 

N = 3
Output: 6
Explanation: All the bold 'B' are the black pixels we need (all 'B's at column 1 and 3).
        0    1    2    3    4    5         column index                                            
0    [['W', 'B', 'W', 'B', 'B', 'W'],    
1     ['W', 'B', 'W', 'B', 'B', 'W'],    
2     ['W', 'B', 'W', 'B', 'B', 'W'],    
3     ['W', 'W', 'B', 'W', 'B', 'W']]    
row index

Take 'B' at row R = 0 and column C = 1 as an example:
Rule 1, row R = 0 and column C = 1 both have exactly N = 3 black pixels. 
Rule 2, the rows have black pixel at column C = 1 are row 0, row 1 and row 2. They are exactly the same as row R = 0.

Note:
The range of width and height of the input 2D array is [1,200].

Solution:

思路:
给了一个整数N,说对于均含有N个黑像素的某行某列,如果该列中所有的黑像素所在的行都相同的话,该列的所有黑像素均为孤独的像素,让我们统计所有的这样的孤独的像素的个数。

那么跟之前那题类似,我们还是要统计每一行每一列的黑像素的个数,而且由于条件二中要比较各行之间是否相等,如果一个字符一个字符的比较写起来比较麻烦,我们可以用个trick,把每行的字符连起来,形成一个字符串,然后直接比较两个字符串是否相等会简单很多(用hashmap(string, count))。然后我们遍历每一行和每一列,如果某行和某列的黑像素刚好均为N,我们遍历该列的所有黑像素,如果其所在行均相等,则说明该列的所有黑像素均为孤独的像素,将个数加入结果res中,然后将该行的黑像素统计个数清零,以免重复运算,这样我们就可以求出所有的孤独的像素了,

Time Complexity: O(N) Space Complexity: O(N)

Solution Code:

// 孤独的点要满足:
// (1) 该行有N个黑点
// (2) 该列有N个黑点
// (3) 该列中所有的黑像素所在的行都相同
public class Solution {
    public int findBlackPixel(char[][] picture, int N) {
        if(picture == null || picture.length == 0 || picture[0].length == 0) return 0;
        int m = picture.length;
        int n = picture[0].length;
        
        Map<String, Integer> map = new HashMap<>();
        int[] colCount = new int[n];
        
        // (预备3)行编码存入map,(预备2)统计列的B,并check(1)该行B的个数是否为N
        for (int i = 0; i < m; i++) {
            String key = scanRow(picture, i, N, colCount);
            if (key.length() != 0) {
                map.put(key, map.getOrDefault(key, 0) + 1);
            }
        }
        
        // check(3) 及 check(2)该列B的个数是否为N
        int result = 0;
        for (String key : map.keySet()) {
            if (map.get(key) == N) {
                for (int j = 0; j < n; j++) {
                    if (key.charAt(j) == 'B' && colCount[j] == N) {
                        result += N;
                    }
                }
            }
        }
        
        return result;
    }
    
    private String scanRow(char[][] picture, int row, int target, int[] colCount) {
        int n = picture[0].length;
        int rowCount = 0;
        StringBuilder sb = new StringBuilder();
        
        for (int j = 0; j < n; j++) {
            if (picture[row][j] == 'B') {
                rowCount++;
                colCount[j]++;
            }
            sb.append(picture[row][j]);
        }
        
        if (rowCount == target) return sb.toString();
        return "";
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351