Netty内存模型-PoolChunk

1概述

从netty 4开始,netty加入了内存池管理,采用内存池管理比普通的new ByteBuf性能提高了数十倍。首先介绍PoolChunk

2原理

PoolChunk主要负责内存块的分配与回收,首先来看看两个重要的术语。

  • page: 可以分配的最小的内存块单位。

  • chunk: 一堆page的集合。

image

上图中是一个默认大小的chunk, 由2048个page组成了一个chunk,一个page的大小为8192, chunk之上有11层节点,最后一层节点数与page数量相等。每次内存分配需要保证内存的连续性,这样才能简单的操作分配到的内存,因此这里构造了一颗完整的平衡二叉树,所有子节点的管理的内存也属于其父节点。如果我们想获取一个8K的内存,则只需在第11层找一个可用节点即可,而如果我们需要16K的数据,则需要在第10层找一个可用节点。如果一个节点存在一个已经被分配的子节点,则该节点不能被分配,例如我们需要16K内存,这个时候id为2048的节点已经被分配,id为2049的节点未分配,就不能直接分配1024这个节点,因为这个节点下的内存只有8K了。

通过上面这个树结构,我们可以看到每次内存分配都是8K*(2^n), 比如需要24K内存时,实际上会申请到一块32K的内存。为了分配一个大小为chunkSize/(2^k)的内存段,需要在深度为k的层从左开始查找可用节点。如想分配16K的内存,chunkSize = 16M, 则k=10, 需要从第10层找一个空闲的节点分配内存。那如何快速分配到指定内存呢,netty使用memoryMap记录分配情况。

image

初始化中memoryMap中key是上图中节点值,value是该节点所在层数,对于节点512,其层数是9,则:

  • 如果memoryMap[512] = 9,则表示其本身到下面所有的子节点都可以被分配;

  • 如果memoryMap[512] = 10, 则表示节点512下有子节点已经分配过,则该节点不能直接被分配,而其子节点中的第10层还存在未分配的节点;

  • 如果memoryMap[512] = 12 (即总层数 + 1), 可分配的深度已经大于总层数, 则表示该节点下的所有子节点都已经被分配。

下面看看如何向PoolChunk申请一段内存:

image

当需要分配的内存大于pageSize时,使用allocateRun实现内存分配。否则使用allocateSubpage分配内存,主要是将一个page分割成多个element进行分配。其中针对请求的大小进行标准化处理(normCapacity是处理后的值),在分配内存是根据使用者请求的内存大小进行计算,匹配最接近的内存单元。在计算时分如下几种情况:

  • 请求的内存大小是否超过了chunkSize,如果已超出说明一个该内存已经超出了一个chunk能分配的范围,这种内存内存池无法分配应由JVM分配,直接返回原始大小。

  • 请求大小大于等于512,返回一个512的2次幂倍数当做最终的内存大小,当原始大小是512时,返回512,当原始大小在(512,1024]区间,返回1024,当在(1024,2048]区间,返回2048等等。

  • 请求大小小于512,返回一个16的整数倍,原始大小(0,16]区间返回16,(16,32]区间返回32,(32,48]区间返回48等等,这些大小的内存块在内存池中叫tiny块。

image

接下来看看allocateRun是如何实现的:

image

在allocateNode中遍历匹配:

image
  • 从根节点开始遍历,如果当前节点的val<d,则通过id<<=1匹配下一层;

  • 如果val > d,则表示存在子节点被分配的情况,而且剩余节点的内存大小不够,此时需要在兄弟节点上继续查找;

  • 分配成功的节点需要标记为不可用,防止被再次分配,在memoryMap对应位置更新为12;

  • 分配节点完成后,其父节点的状态也需要更新,并可能引起更上一层父节点的更新。

如节点2048被分配出去,更新如下:

image

References

1.https://www.jianshu.com/p/c4bd37a3555b

2.https://www.cnblogs.com/pugongying017/p/9616333.html

3.https://blog.csdn.net/youaremoon

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容