MongoDB的聚合操作以及与Python的交互

在本文中主要介绍MongoDB的聚合以及与Python的交互。

MongoDB聚合

什么是聚合

MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。

聚合是基于数据处理的聚合管道,每个文档通过由多个阶段组成的管道,可以对每个阶段的管道进行分组、过滤等功能,然后经过一系列处理,输出结果。

语法: db.集合名称.aggregate({管道: {表达式}})

管道一般用于将当前命令的输出结果作为下一个命令的参数。

MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。管道操作是可以重复的。

常用管道

下面介绍常用的管道:

$group
$match
$project
$sort
$limit
$skip
$unwind

常用聚合表达式

下面介绍常用的聚合表达式:

  • $sum :计算总和, $sum:1 表示以1计数
  • $avg :计算平均值
  • $min :获取最小值
  • $max :获取最大值
  • $push :在结果文档中插入值到一个数组中
  • $first :根据资源文档的排序,获取第一个文档数据
  • $last :根据资源文档的排序,获取最后一个文档数据

MongoDB聚合实例

现在假设集合 studen 中有以下数据:

{ "_id" : 1, "name" : "小然", "gender" : 1, "age" : 22, "score" : 95 }
{ "_id" : 2, "name" : "小红", "gender" : 0, "age" : 18, "score" : 80 }
{ "_id" : 3, "name" : "小亮", "gender" : 1, "age" : 19, "score" : 60 }
{ "_id" : 4, "name" : "小强", "gender" : 1, "age" : 23, "score" : 70 }
{ "_id" : 5, "name" : "小柔", "gender" : 0, "age" : 20, "score" : 85 }
{ "_id" : 6, "name" : "小雷", "gender" : 1, "age" : 25, "score" : 65 }
{ "_id" : 7, "name" : "小冉", "gender" : 0, "age" : 19, "score" : 70 }
{ "_id" : 8, "name" : "小晴", "gender" : 0, "age" : 18, "score" : 90 }
{ "_id" : 9, "name" : "小齐", "gender" : 1, "age" : 24, "score" : 50 }
  • 以性别进行分组
db.students.aggregate({$group:{_id:"$gender"}})</pre>

输出结果为:

image
  • 统计整个文档,获得数据个数和平均分数
db.students.aggregate({$group:{
        _id:null,
        count:{$sum:1},
        avg_score:{$avg:"$score"}
    }})</pre>

输出结果为:

image
  • 以性别进行分组,获取不同分组中数据的个数和平均分数
db.students.aggregate({$group:{
        _id:"$gender",
        count:{$sum:1},
        avg_score:{$avg:"$score"}
    }})</pre>

输出结果为:

image
  • 使用 $project 修改输出结果
db.students.aggregate(
        {$group:{
            _id:"$gender",
            count:{$sum:1},
            avg_score:{$avg:"$score"}}
        },
        {$project:{
            gender:"$_id",
            count:1,
            _id:0,
            avg_score:"$avg_score"}
        }
    )

输出结果为:

image
  • 使用 $match 选择分数大于等于70的学生,统计男生、女生的人数
db.students.aggregate(
        {$match:{score:{$gte:70}}},
        {$group:{_id:"$gender",count:{$sum:1}}},
        {$project:{gender:"$_id",count:1,_id:0}}
    )

输出结果为:

image

MondoDB与Python的交互

pymongo的安装

使用Python操作MongoDB需要安装 pymongo ,安装方法很简单,使用 pip install pymongo即可。

实例化并建立连接

首先从 pymongo 中导入 MongoClient ,然后实例化 client ,建立连接,代码如下:

from pymongo import MongoClient

    client = MongoClient(host = "127.0.0.1",port = 27017)
        #操作本机MongoDB可以写成client = MongoClient()
    collection = client["test"]["test"]

常用操作实例

  • 插入一条数据
collection.insert_one({"_id":0,"name":"test0"})</pre>
  • 插入多条数据
data_list = [{"_id":i,"name":"test{}".format(i)} for i in range(10)]
    collection.insert_many(data_list)
    data_list = [{"name":"test{}".format(i)} for i in range(10)]
    collection.insert_many(data_list)</pre>

插入后结果如下图所示, 下面的操作都在此数据库上进行操作。

image
  • 查询一条记录
print(collection.find_one({"name":"test2"}))</pre>

输出结果为:

image
  • 查询所有记录
result = collection.find({"name":"test2"})
    for i in result:
        print(i)</pre>

输出结果为:

image
  • 更新一条数据
collection.update_one({"name":"test1"},{"$set":{"name":"test10"}})</pre>

执行完操作后,数据库如下图所示:

image
  • 更新全部数据
collection.update_many({"name":"test2"},{"$set":{"name":"test20"}})</pre>

执行完操作后,数据库如下图所示:

image
  • 删除一条数据
collection.delete_one({"name":"test3"})</pre>

执行完操作后,数据库如下图所示:

image
  • 删除所有满足条件的数据
collection.delete_many({"name":"test4"})</pre>

执行完操作后,数据库如下图所示:

image

结语

  • 本篇主要介绍了MongoDB的聚合操作以及与Python的交互,但对于我目前的学习阶段来说,只用到了Python中的插入数据语句,其他的操作基本没有用到。
  • 感谢大家的阅读,有错误希望大家能够指出,我会积极改正。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容

  • 一、MongoDB简介 1.概述 ​ MongoDB是一个基于分布式文件存储的数据库,由C++语言编写。旨在为WE...
    郑元吉阅读 976评论 0 2
  • PyMongo官方文档翻译 这是本人翻译的PyMongo官方文档。现在网上分(抄)享(袭)的PyMongo博客文章...
    加勒比海带_4bbc阅读 323评论 0 0
  • 简介 MongoDB 是一个基于分布式文件存储的NoSQL数据库 由C++语言编写,运行稳定,性能高 旨在为 WE...
    大熊_7d48阅读 36,776评论 1 9
  • 我们听过无数的道理,却仍旧过不好这一生。 ...
    三山兮阅读 1,013评论 0 1
  • 1.《天使,望故乡》 天使望向故乡,大抵是因为那个故乡回不去,只能远望(好长的一本书)。 闭塞小镇大概有杀人的能力...
    一条污蚣阅读 235评论 0 0