浅谈OC中Block的本质

Block简介

  • block是将函数及其执行上下文封装起来的一个对象
  • 在block实现的内部,有很多变量,因为block也是一个对象
  • 其中包含了诸如isa指针,imp指针等对象变量,还有储存其截获变量的对象等

定义和使用

block根据有无参数和有无返回值有以下几种简单使用方式

// 无参数无返回值
void (^ BlockOne)(void) = ^(void){
    NSLog(@"无参数,无返回值");  
};  
BlockOne();//block的调用

// 有参数无返回值
void (^BlockTwo)(int a) = ^(int a){
    NSLog(@"有参数,无返回值, 参数 = %d,",a);
};  
BlockTwo(100);

// 有参数有返回值
int (^BlockThree)(int,int) = ^(int a,int b){    
    NSLog(@"有参数,有返回值");
    return a + b; 
};  
BlockThree(1, 5);

// 无参数有返回值
int(^BlockFour)(void) = ^{
    NSLog(@"无参数,有返回值");
    return 100;
};
BlockFour();

可是以上四种block底层又是如何实现的呢? 其本质到底如何? 接下来我们一起探讨一下

Block的本质

  • 为了方便我们这里新建一个Command Line Tool项目, 在main函数中执行上述中一个block
  • 探索Block的本质, 就要查看其源码, 这里我们使用下面命令把main.m文件生成与其对应的c++代码文件
  • 在main.m文件所在的目录下, 执行如下命令, 会生成一个main.cpp文件
    把main.cpp文件添加到项目中, 并使其不参与项目的编译, 下面我们就具体看一下block的底层到底是如何实现的
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m

打开main.cpp文件, 找到文件最底部, 可以看到block的相关源码如下

// block的结构体
struct __main_block_impl_0 {
  // 结构体的成员变量
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  
  // 构造函数
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

// 封装了block执行逻辑的函数
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {

            NSLog((NSString *)&__NSConstantStringImpl__var_folders_ty_804897ld2zg4pfcgx2p4wqh80000gn_T_main_11c959_mi_0);
        }

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 

        // 定义block变量
        void (* BlockOne)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));

        // 执行block内部的源码
        ((void (*)(__block_impl *))((__block_impl *)BlockOne)->FuncPtr)((__block_impl *)BlockOne);

    }
    return 0;
}
static struct IMAGE_INFO { unsigned version; unsigned flag; } _OBJC_IMAGE_INFO = { 0, 2 };

其中block的声明和调用的对应关系如下

删除其中的强制转换的相关代码后

// 定义block变量
void (* BlockOne)(void) = &__main_block_impl_0(
                                                (void *)__main_block_func_0,
                                                &__main_block_desc_0_DATA
                                            );

// 执行block内部的源码
BlockOne->FuncPtr(BlockOne);

上述代码中__main_block_impl_0函数接受两个参数, 并有一个返回值, 最后把函数的地址返回给BlockOne, 下面找到__main_block_impl_0的定义

// 结构体
struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  
  // c++中的构造函数, 类似于OC中的init方法
  // flags: 默认参数, 调用时可不传
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
  • __main_block_impl_0函数中的第一个参数__main_block_func_0赋值给了fp, fp又赋值给了impl.FuncPtr, 也就意味着impl.FuncPtr中存储的就是我们要执行的__main_block_func_0函数的地址
  • Block结构体中的isa指向了_NSConcreteStackBlock, 说明Block是一个_NSConcreteStackBlock类型, 具体后面会详解
  • __main_block_impl_0函数中的第二个参数__main_block_desc_0_DATA
static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
  • 其中reserved赋值为0
  • Block_size被赋值为sizeof(struct __main_block_impl_0), 即为__main_block_impl_0这个结构体占用内存的大小
  • __main_block_impl_0的第二个参数, 接受的即为__main_block_desc_0结构体的变量(__main_block_desc_0_DATA)的地址

Block变量捕获

  • 局部变量分为两大类: auto和static

    • auto: 自动变量, 离开作用域就会自动销毁, 默认情况下定义的局部变量都是auto修饰的变量, 系统都会默认给添加一个auto
    • auto不能修饰全局变量, 会报错
    • static作用域内修饰局部变量, 可以修饰全局变量
  • 全局变量

局部变量

auto变量捕获

auto局部变量在Block中是值传递

下述代码输出值为多少?

int age = 10;

void (^BlockTwo)(void) = ^(void){
    NSLog(@"age = %d,",age);
};

age = 13;
BlockTwo();
// 输出10

输出值为什么是10而不是13呢? 我们还是生成main.cpp代码看一下吧, 相关核心代码如下

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  // 这里多了一个age属性
  int age;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _age, int flags=0) : age(_age) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  int age = __cself->age; // bound by copy

            NSLog((NSString *)&__NSConstantStringImpl__var_folders_ty_804897ld2zg4pfcgx2p4wqh80000gn_T_main_80d62b_mi_0,age);
        }

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;  
        // 定义属性
        int age = 10;

        // block的定义
        void (*BlockTwo)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, age));
        
        // 改变属性值
        age = 13;
        // 调用block
        ((void (*)(__block_impl *))((__block_impl *)BlockTwo)->FuncPtr)((__block_impl *)BlockTwo);
    }
    return 0;
}
static struct IMAGE_INFO { unsigned version; unsigned flag; } _OBJC_IMAGE_INFO = { 0, 2 };

那么下面我们一步步看一下, 吧一些强制转换的代码去掉之后

int age = 10;

void (*BlockTwo)(void) = &__main_block_impl_0(
                                            __main_block_func_0,
                                            &__main_block_desc_0_DATA,
                                            age
                                            );

age = 13;
BlockTwo->FuncPtr(BlockTwo);

在上面的__main_block_impl_0函数里面相比于之前的, 多了一个age参数

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  // 新的属性age
  int age;
  // 构造函数, 多了_age参数
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _age, int flags=0) : age(_age) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
  • 上面的构造方法__main_block_impl_0中, 多了一个_age参数
  • 同时后面多了一条age(_age)语句, 在c++中, age(_age)相当于age = _age, 即给age属性赋值, 存储构造函数传过来的age属性的值
  • 所以在后面调用block的时候, block对应的结构体所存储的age属性的值仍然是10, 并没有被更新
// 及时这里重新对age进行了赋值
age = 13;

// 这里调用BlockTwo的时候, 结构体重的age属性的值并没有被更新
BlockTwo->FuncPtr(BlockTwo);

// 最后在执行block内部逻辑的时候, 
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    int age = __cself->age; // bound by copy
    // 这里的age, 仍然是block结构体中的age, 值并没有改变, 所以输出结果还是10
    NSLog((NSString *)&__NSConstantStringImpl__var_folders_ty_804897ld2zg4pfcgx2p4wqh80000gn_T_main_80d62b_mi_0,age);
}

static变量捕获

static局部变量在Block中是指针传递, 看一下下面代码的输出情况

auto int age = 10;
static int weight = 20;

void (^BlockTwo)(void) = ^(void){
    NSLog(@"age = %d, weight = %d,",age, weight);
};

age = 13;
weight = 23;
BlockTwo();
  • 上面代码输出结果: age = 10, weight = 23
  • 重新赋值后age的结果不变, 之前已经说过了
  • 可是weight的结果却是赋值后的结果, 至于为什么, 请继续向下看吧…
  • 我们还是生成main.cpp代码看一下吧, 相关核心代码如下
struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  int age;
  int *weight;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _age, int *_weight, int flags=0) : age(_age), weight(_weight) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  int age = __cself->age; // bound by copy
  int *weight = __cself->weight; // bound by copy

            NSLog((NSString *)&__NSConstantStringImpl__var_folders_ty_804897ld2zg4pfcgx2p4wqh80000gn_T_main_282a93_mi_0,age, (*weight));
        }

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 
        auto int age = 10;
        static int weight = 20;

        void (*BlockTwo)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, age, &weight));

        age = 13;
        weight = 23;
        ((void (*)(__block_impl *))((__block_impl *)BlockTwo)->FuncPtr)((__block_impl *)BlockTwo);
    }
    return 0;
}
static struct IMAGE_INFO { unsigned version; unsigned flag; } _OBJC_IMAGE_INFO = { 0, 2 };
  • 从上面代码可以看到__main_block_impl_0类中多了两个成员变量age和weight, 说明两个变量我们都可以捕获到
  • 不同的是, 同样都是int变量, 使用不同的修饰词修饰, __main_block_impl_0类中也是不同的
  • static修饰的变量weight在block中存储的是weight的地址, 在后面的block函数中我们使用的也是其地址
int age;
int *weight;

// &weight
void (*BlockTwo)(void) = &__main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA, age, &weight);

// 下面构造方法中, 同样(weight(_weight)方法之前讲过)将传过来的weight的地址赋值给了 (int *weight;)
 __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _age, int *_weight, int flags=0) : age(_age), weight(_weight) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
}
  • 也就是说上面的构造函数中
    • age保存的是一个准确的值
    • weight保存的是weight所在的内存地址
  • 所以在最后调用block内部逻辑的时候
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    int age = __cself->age; // bound by copy
    int *weight = __cself->weight; // bound by copy

    // (*weight)相当于从weight的内存地址中取值, 在执行操作
    // 然而weight内存中的值已经在后面赋值的时候被更新了, 所以这里取出的值是赋值后的
    NSLog((NSString *)&__NSConstantStringImpl__var_folders_ty_804897ld2zg4pfcgx2p4wqh80000gn_T_main_282a93_mi_0,age, (*weight));
}

也就是说, 同样是局部变量
auto修饰的变量在block中存储的是变量的值(值传递)
static修饰的变量在block中存储的是变量的内存地址(地址传递)
全局变量

int age = 10;
static int weight = 20;

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        void (^BlockTwo)(void) = ^(void){
            NSLog(@"age = %d, weight = %d,",age, weight);
        };
        
        age = 13;
        weight = 23;
        BlockTwo();
    }
    return 0;
}

上面代码的输出结果, 毫无疑问是13和23, 相关c++代码如下

int age = 10;
static int weight = 20;


struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {

            // 封装了block执行逻辑的函数
            NSLog((NSString *)&__NSConstantStringImpl__var_folders_ty_804897ld2zg4pfcgx2p4wqh80000gn_T_main_0ee0bb_mi_0,age, weight);
        }

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 

        // 定义block变量
        void (*BlockTwo)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));

        age = 13;
        weight = 23;
        ((void (*)(__block_impl *))((__block_impl *)BlockTwo)->FuncPtr)((__block_impl *)BlockTwo);
    }
    return 0;
}
static struct IMAGE_INFO { unsigned version; unsigned flag; } _OBJC_IMAGE_INFO = { 0, 2 };
  • 从上面代码可以看出__main_block_impl_0结构体重并没有捕获到age和weight的成员变量
  • 同样在定义block变量的时候中也不需要传入age和weight的变量
  • 在封装了block执行逻辑的函数中, 就可以直接使用全局的变量即可

Block的类型

Block的三种类型

  • 在之前的C++源码中, __main_block_impl_0结构体中isa指向的类型是_NSConcreteStackBlock
  • 下面就具体看一下, Block的只要类型有那些
  • 先看一下下面这部分代码的输出结果
void (^block)(void) = ^(void){
    NSLog(@"Hello World");
};

NSLog(@"%@", [block class]);
NSLog(@"%@", [[block class] superclass]);
NSLog(@"%@", [[[block class] superclass] superclass]);
NSLog(@"%@", [[[[block class] superclass] superclass] superclass]);

/*
 2019-06-24 15:46:32.506386+0800 Block[3307:499032] __NSGlobalBlock__
 2019-06-24 15:46:32.506578+0800 Block[3307:499032] __NSGlobalBlock
 2019-06-24 15:46:32.506593+0800 Block[3307:499032] NSBlock
 2019-06-24 15:46:32.506605+0800 Block[3307:499032] NSObject
 */
  • block的类型NSBlock最终也是继承自NSObject
  • 这也可以解释为什么block的结构体__main_block_impl_0中会有一个isa指针了
  • 此外, block共有三种类型, 可以通过调用class方法或者isa指针查看具体类型, 最终都是继承自NSBlock类型
    • NSGlobalBlock或者_NSConcreteGlobalBlock
    • NSStackBlock或者_NSConcreteStackBlock
    • NSMallocBlock或者_NSConcreteMallocBlock

block在内存中的分配

  • _NSConcreteGlobalBlock: 在数据区域
  • _NSConcreteStackBlock: 在栈区域
  • _NSConcreteMallocBlock: 在堆区域
  • 应用程序的内存分配图如上图所示, 自上而下依次为内存的低地址–>内存的高地址
  • 程序区域: 代码段, 用于存放代码
  • 数据区域: 数据段, 用于存放全局变量
  • 堆: 动态分配内存,需要程序员自己申请,程序员自己管理, 通常是alloc或者malloc方式申请的内存
  • 栈: 用于存放局部变量, 系统会自动分配内存, 自动销毁内存
    区分不同的block类型
  • 上面提到, 一共有三种block类型, 且不同的block类型存放在内存的不同位置
  • 但是如何区分所定义的block
    到底是哪一种类型呢
    看看下面代码的执行情况, 运行环境实在MRC环境下
static int age = 10;
int main(int argc, const char * argv[]) {
    @autoreleasepool {
        
        int weight = 21;
        void (^block1)(void) = ^(void){
            NSLog(@"Hello World");
        };
        void (^block2)(void) = ^(void){
            NSLog(@"age  =  %d", age);
        };
        void (^block3)(void) = ^(void){
            NSLog(@"age  =  %d", weight);
        };
        
        NSLog(@"block1 = %@", [block1 class]);
        NSLog(@"block2 = %@", [block2 class]);
        NSLog(@"block3 = %@", [block3 class]);
        
        /*
         2019-06-24 21:13:14.555206+0800 Block[30548:1189724] block1 = __NSGlobalBlock__
         2019-06-24 21:13:14.555444+0800 Block[30548:1189724] block2 = __NSGlobalBlock__
         2019-06-24 21:13:14.555465+0800 Block[30548:1189724] block3 = __NSStackBlock__
         */
    }
    return 0;
}

针对各种不同的block总结如下

  • 由于NSMallocBlock是放在堆区域
  • 要想创建出NSMallocBlock类型的block, 我们可以调用copy方法
void (^block3)(void) = ^(void){
    NSLog(@"age  =  %d", weight);
};

NSLog(@"block3 = %@", [block3 class]);
NSLog(@"block3 = %@", [[block3 copy] class]);
/* 输出分别是: 
block3 = __NSStackBlock__
block3 = __NSMallocBlock__
*/
  • 从上面的代码中我们可以明显看到, NSStackBlock类型的block调用copy方法后, 就会变成NSMallocBlock类型的block
  • 相当于生成的block是在堆区域的
  • 那么另外两种类型调用copy方法后,又会如何? 下面一起来看一下吧
int weight = 21;
void (^block1)(void) = ^(void){
    NSLog(@"Hello World");
};
void (^block3)(void) = ^(void){
    NSLog(@"age  =  %d", weight);
};

NSLog(@"block1 = %@", [block1 class]);
NSLog(@"block1 = %@", [[block1 copy] class]);
NSLog(@"block3 = %@", [block3 class]);
NSLog(@"block3 = %@", [[block3 copy] class]);
NSLog(@"block3 = %@", [[[block3 copy] copy] class]);
/*
 __NSGlobalBlock__
 __NSGlobalBlock__
 __NSStackBlock__
 __NSMallocBlock__
 __NSMallocBlock__
 */
  • 从上面的代码可以看到, 只有NSStackBlock类型的block调用copy之后才会变成NSMallocBlock类型, 其他的都是原类型

  • 主要也是NSStackBlock类型的作用域是在栈中, 作用域中的局部变量会在函数结束时自动销毁

  • NSStackBlock调用copy操作后,分配的内存地址相当于从栈复制到堆;副本存储位置是堆

  • 其他的则可参考下面表格


  • 在ARC环境下, 编译器会根据情况自动将站上的block复制到堆上, 类似以下情况

    • block作为函数返回值时
    • 将block赋值给__strong修饰的指针时
    • block作为GCD的方法参数时

__block修饰符

Question: 定义一个auto修饰的局部变量, 并在block中修改该变量的值, 能否修改成功呢?

auto int width = 10;
static int height = 20;
void (^block)(void) = ^(void){
    // 事实证明, 在Xcode中这行代码是报错的
    width = 22;
    // 但是static修饰的变量, 却是可以赋值, 不会报错
    height = 22;
    NSLog(@"width = %d, height = %d", width, height);
};

block();

// width = 10, height = 22
  • 在之前提到, 在block中, auto修饰的变量是值传递
  • static修饰的变量是指针传递, 所以在上述代码中, block存储的只是height的内存地址
  • 同样auto变量实在main函数中定义的, 而block的执行逻辑是在__main_block_func_0结构体的方法中执行的, 相当于局部变量不能跨函数访问
  • 至于static修饰的变量为什么可以修改?
    • 在__main_block_impl_0结构体中height存储的是其内存地址, 在其他函 数或者结构体中访问和改变height的方式都是通过其真真访问的
    • 类似赋值方式: (*height) = 22;
    • 取值方式: (*height)
      __block修饰auto变量
__block auto int width = 10;

void (^block)(void) = ^(void) {
    // 很明显, 这里就可以修改了
    width = 12;
    NSLog(@"width = %d", width);
};

block();
// width = 12

为什么上面的代码就可以修改变量了呢, 这是为什么呢…请看源码

下面是生成的block的结构体

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  
  // 这里的width被包装成了一个__Block_byref_width_0对象
  __Block_byref_width_0 *width; // by ref
  // 这里可以对比一下之前的未被__block修饰的int变量
  // int width;
  
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_width_0 *_width, int flags=0) : width(_width->__forwarding) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
  • 上述代码看到__block可以用于解决block内部无法修改auto修饰的变量值得问题
  • 但是__block不能修饰全局变量和static修饰的静态变量(同样也不需要, 因为在block内部可以直接修改)
  • 经过__block修饰的变量会被包装成一个对象(__Block_byref_width_0)
  • 下面是width被包装后的对象的结构体, 在结构体内, 会有一个width成员变量
struct __Block_byref_width_0 {
  void *__isa;
  // 一个指向自己本身的成员变量
  __Block_byref_width_0 *__forwarding;
  int __flags;
  int __size;
  // 外部定义的auto变量
  int width;
};

下面我们先看一下, auto和block的定义和调用

int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 
        // __block auto int width = 10;
        auto __Block_byref_width_0 width = {
            0,
            &width,
            0,
            sizeof(__Block_byref_width_0),
            10
        };

        void (*block)(void) = &__main_block_impl_0(
            __main_block_func_0,
            &__main_block_desc_0_DATA,
            &width,
            570425344
        );

        block->FuncPtr(block);
    }
    return 0;
}
  • 可以看到在定义的__Block_byref_width_0类型的width中的每一个参数分别赋值给了__Block_byref_width_0结构体中的每一个成员变量
  • 而在block内部重新对width重新赋值的逻辑中
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    __Block_byref_width_0 *width = __cself->width; // bound by ref

    (width->__forwarding->width) = 12;
    NSLog((NSString *)&__NSConstantStringImpl__var_folders_ty_804897ld2zg4pfcgx2p4wqh80000gn_T_main_9241d5_mi_0, (width->__forwarding->width));
}
  • 上面代码中的width是一个__Block_byref_width_0类型的变量
    width对象通过找到内部的__forwarding成员变量
  • 在__Block_byref_width_0结构体中__forwarding是一个指向自己本身的成员变量
  • 所以最后再通过__forwarding找到__Block_byref_width_0的成员变量width, 在进行重新赋值
  • 在NSLog中也是通过这种逻辑获取width的值

作为一个开发者,有一个学习的氛围和一个交流圈子特别重要,这是我的交流群,点击进群(123),大家有兴趣可以进群里一起交流学习!

收录:原文地址

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容