深度学习基础(二)-学习是怎么个回事

深度学习基础(一) 引入了一个 helloworld,提出了神经网络的简单关系,也就是一个基础公式

a(L) = Sigmoid( a(L-1)*W(L) + b(L))

a(L): 第L层神经元被激活之后 进行Sigmoid函数收敛 得到的值

b(L): 第L层神经元被激活阈值

W(L): 第L层神经元 与 第L-1层神经元之间的关系 权重

由于 神经元之间的关系 通过公式计算之后得到的值 会是一个很大的范围,

我们也无从知道,这个范围多大,总之很多种可能,为了方便操作,采用Sigmoid函数将 计算结果收敛到 0~1 这个范围

从网络第二层开始,每个神经元身上 都具备了n(前一层神经元个数,由于当前层的每个神经元与前一层 的n个神经元都会有关系)个W控制器,1个阈值开关

如此,整个网络就会有很多个 这样的 w b开关,如果这些开关能调试到一个合适的位置,那么整个网络从第一层接收输入的数据,就会吐出来一个不错的结果,比如上篇文章提到的手写体数字识别,得到一个相当不错的识别结果

关键的问题就是,如何调试这些开关,假如有十几二十多个开关,我们还能手动调一调,但 上文中提到的结构,网络有 4层, 784 x 16 x 16 x 10, 总共10000多个开关,这完全不是我们能处理的

神经网络 学习就是 调试这些开关参数了

这篇说文,我不会引入太多的图来说明,主要通过简单的数学逻辑引申到这个主题上来,基本上就是白话了,也没有复杂的公式

如何调试开关

不像我们解微分方程,线性矩阵运算,简单通过微分积分策略与向量方程求解,得到结果就完事了

通过微积分我们能做的那些事,计算机甚至比我们做得更好更高效

主要在于神经网络所阐述的学习逻辑是怎么个逻辑,怎么就能调试那么多的参数

我们在大一都学过 高等数学,想想为什么要求导,我们最开始学习的时候,是怎么引入导数这个概念的,

肯定不是一开始就记公式的,因为要研究一些非线问题,我们通过简单的高中数学无法解决的问题

以一元函数为例,汽车开始行驶 到行驶结束,求速度的问题,还记得那个 小三角变化量么,当时就是为了研究 自变量改变一点点,因变量的变化,引出了导数的概念,然后如何通过积分求面积,就是这样开始的

神经网络也一样,面对庞大的参数集要求解,直接使用公式是没可能的,那么也开始像最开始接触导数一样,从一点点的变化开始慢慢探究

image.png

上图就是前面提到的公式了,为了方便理解,引入了变量Z,Sigmoid就是对Z进行收敛

图中的复合多元函数求导也非常简单,用到的链式法则也很好理解,如果确实忘记的话简单百度一下也很容易恢复记忆

神经网络调试开关不是一蹴而就的,而是一点点慢慢调的,这个过程就有点像我们开始学习高等数学解题一样,通过求导慢慢探究,然后通过积分来求面积一样

我们假定神经网络有4层,第一层为输入层,所以第一层神经元 激活值可以认为是确定的

中间两层是通过第一层传递过来的

最后一层为输出层,也是通过中间两层传递输出来的

开始,神经网络给所有的开关随机了一个值作为初始值,当然了,这样网络输出的结果基本上不是我们期望的结果

那就从第一次输出的结果开始,我们能知道输出层与我们期望的结果 相差多少,假定我们是计算机,我们根据结果的偏差来调整我们最后一层神经元上绑定的开关 w,b

这里又不得不插入一些赘述,因为涉及到了结果评价问题,需要对输出结果是什么有直观的认识


输出结果其实是 通过输出层的 10个神经元反馈出来的

10个神经元,每个神经元 分别代表着 0,1,2,..... 9 这10个罗马数字

每个神经元的激活值 为 0~1,看输出层这10个神经元,谁的 激活值最大,就表示谁代表的罗马数字就是最终的结果

如果 输入的手写体 是个3,那么我们希望神经网络输出的结果自然是3, 代表3的那个神经元的激活值应该最高为1, 其他的神经元激活值应该都为0

这样我们根据结果 判断,目前网络的开关设置下输出的结果与 我们期望得到的结果差别,通过网络最后一层能看到的直观结果就是这样了


继续回到调试开关上来

第一次随机开关设置,网络输出之后,我们发现 目标指代正确结果的那个神经元 激活值偏低,非目标神经元激活值偏高

我们当然就希望目标神经元 激活值高一些,非目标神经元 激活值 低一些

如果是这么简单,我们直接调试过来就好了

当然了,这个网络并非输出一种结果,另一组输入,比如手写2,期望输出 2罗马数字,对最后一层开关的调试方案又是一种情况

目前我们的关注点只在最后一层也就是输出层上

神经网络在最后一层上的开关调试,就是 根据各种输入得到的结果偏差,各自期望的调试方向 叠加到一起,形成一个最合适有效的调试方案,最终保障各自的输入都能尽可能的输出正确的结果

正因为,大家都需要调试开关,都有各自的输出诉求,就不能简单粗暴的设置了,需要慢慢商议,你进一点,他退一点,不合适了再反过来,如此,反复磨,反复商议,最终才能形成方案来


即使这样,我们也是尽最大可能调试最后一层网络开关而已,中间的两层神经元上也有很多开关,到此我们还未涉及到

码字来说明确实效率有点低下,马上要涉及的神经网络学习策略 放在放在下篇更文

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容