怎么使?
一、引入Guava pom配置
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>29.0-jre</version>
</dependency>
二、代码实现
import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
public class BloomFilterCase {
/**
* 预计要插入多少数据
*/
private static int size = 1000000;
/**
* 期望的误判率
*/
private static double fpp = 0.01;
/**
* 布隆过滤器
*/
private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size, fpp);
public static void main(String[] args) {
// 插入10万样本数据
for (int i = 0; i < size; i++) {
bloomFilter.put(i);
}
// 用另外十万测试数据,测试误判率
int count = 0;
for (int i = size; i < size + 100000; i++) {
if (bloomFilter.mightContain(i)) {
count++;
System.out.println(i + "误判了");
}
}
System.out.println("总共的误判数:" + count);
}
}
运行结果:
10万数据里有947个误判,约等于0.01%,也就是我们代码里设置的误判率:fpp = 0.01。
深入分析代码
核心BloomFilter.create方法
@VisibleForTesting
static <T> BloomFilter<T> create(
Funnel<? super T> funnel, long expectedInsertions, double fpp, Strategy strategy) {
。。。。
}
这里有四个参数:
funnel:数据类型(一般是调用Funnels工具类中的)
expectedInsertions:期望插入的值的个数
fpp:误判率(默认值为0.03)
strategy:哈希算法
我们重点讲一下fpp参数
fpp误判率
情景一:fpp = 0.01
误判个数:947
占内存大小:9585058位数
情景二:fpp = 0.03(默认参数)
误判个数:3033
占内存大小:7298440位数
情景总结
误判率可以通过fpp参数进行调节
fpp越小,需要的内存空间就越大:0.01需要900多万位数,0.03需要700多万位数。
fpp越小,集合添加数据时,就需要更多的hash函数运算更多的hash值,去存储到对应的数组下标里。(忘了去看上面的布隆过滤存入数据的过程)
上面的numBits,表示存一百万个int类型数字,需要的位数为7298440,700多万位。理论上存一百万个数,一个int是4字节32位,需要481000000=3200万位。如果使用HashMap去存,按HashMap50%的存储效率,需要6400万位。可以看出BloomFilter的存储空间很小,只有HashMap的1/10左右
上面的numHashFunctions表示需要几个hash函数运算,去映射不同的下标存这些数字是否存在(0 or 1)。
解决Redis缓存雪崩
上面使用Guava实现的布隆过滤器是把数据放在了本地内存中。分布式的场景中就不合适了,无法共享内存。
我们还可以用Redis来实现布隆过滤器,这里使用Redis封装好的客户端工具Redisson。
其底层是使用数据结构bitMap,大家就把它理解成上面说的二进制结构,由于篇幅原因,bitmap不在这篇文章里讲,我们之后写一篇文章介绍。
代码实现
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson-spring-boot-starter</artifactId>
<version>3.13.4</version>
</dependency>
public class RedissonBloomFilter {
public static void main(String[] args) {
Config config = new Config();
config.useSingleServer().setAddress("redis://127.0.0.1:6379");
config.useSingleServer().setPassword("1234");
//构造Redisson
RedissonClient redisson = Redisson.create(config);
RBloomFilter<String> bloomFilter = redisson.getBloomFilter("phoneList");
//初始化布隆过滤器:预计元素为100000000L,误差率为3%
bloomFilter.tryInit(100000000L,0.03);
//将号码10086插入到布隆过滤器中
bloomFilter.add("10086");
//判断下面号码是否在布隆过滤器中
//输出false
System.out.println(bloomFilter.contains("123456"));
//输出true
System.out.println(bloomFilter.contains("10086"));
}
}