查准率(Precision)和召回率(Recall)

在处理分类问题时,会遇到一种情况:

假设一个二元分类问题:假设我们的预测算法是:h_\theta(x)=0,这个算法忽略特征值x,不管任何情况下都是预测h_\theta(x)等于0。

毫无疑问这是一个糟糕的算法,但是在测试集中,99%的样本输出y=1,1%的样本输出y=0,这样计算预测算法的误差率的时候,会的到1%的误差率,这就是很糟糕的情况,一个完全错误的算法得到了一个正确率很高的测试结果。

这种情况称之为偏斜类(Skewed Classes)的问题。

解决问题的办法

处理这种情况,需要参考查准率和召回率

上图的表格中,提到了四个概念。
TP(真阳性) 预测为真的样本中确实为真的数量。
FP(假阳性) 预测为真的样本中确实为假的数量。
FN(假阴性) 预测为假的样本中确实为真的数量。
TN(真阴性) 预测为假的样本中确实为假的数量。

举个例子来说明

预测某些病人有没有得癌症。
假设有100个样本,真实情况是有10个得癌症的,通过预测函数遇到到了有12个得了癌症,其中有8个是真实得癌症的。
这种情况下:
TP=8
FP=12-8=4
FN=10-8=2
TN=(100-12)-2=86

准确率 Accuracy

正确预测为1,正确预测为0的样本比率,公式为:\frac{TP+TN}{ALL}
上例中准确率为 \frac{8+86}{100}=0.94

查准率 Precision

查准率是指在所有预测为1的样本中预测正确的比率,公式为:\frac{TP}{TP+FP}
上例中查准率为 \frac{8}{8+4}=0.667

召回率 Recall

召回率是指在所有真正为1的样本中预测正确的比率,公式为:\frac{TP}{TP+FN}
上例中召回率为 \frac{8}{8+2}=0.8

在最开始偏斜类问题中 TP=0,召回率为0,因此那个预测算法是错误的。

查准率和召回率的关系

在分类问题中,h_\theta(x) \geq 0.5 是我们就预测为1,h_\theta(x) < 0.5 是我们就预测为0;

边界条件就是0.5
当提高边界值时,即h_\theta(x) \geq 0.7,查准率会提高,召回率会下降;
当减小边界值时,即h_\theta(x) \geq 0.3,召回率会提高,查准率会下降。

查准率和召回率之间的变化关系和上图类似,变化的曲线可能不是上图的平滑关系。大方向两者是相反的增长。

判断一个学习算法的性能

要判断一个学习学习算法需要综合考虑查准率和召回率,可以使用 F值(F-Score) 来综合评价。
公式为:2\frac{P*R}{P+R}

通过上面,可以得出算法1的性能比较好。

转载自:
https://codeeper.com/2020/01/26/tech/machine_learning/evaluating_learning_algorithm.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352