2018-08-06 Tensorflow基础构架

一、处理结构

  Tensorflow 首先要定义神经网络的结构, 然后再把数据放入结构当中去运算和 training.

image

  因为TensorFlow是采用数据流图(data flow graphs)来计算, 所以首先我们得创建一个数据流图, 然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算. 节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组, 即张量(tensor). 训练模型时tensor会不断的从数据流图中的一个节点flow到另一节点, 这就是TensorFlow名字的由来.

张量(Tensor)

  张量有多种. 零阶张量为 纯量或标量 (scalar) 也就是一个数值. 比如 [1]
  一阶张量为 向量 (vector), 比如 一维的 [1, 2, 3]
  二阶张量为 矩阵 (matrix), 比如 二维的 [[1, 2, 3],[4, 5, 6],[7, 8, 9]]
  以此类推, 还有 三阶 三维的 …


参考链接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/2-1-structure/

二、例子

  1. 创建数据
      导入tensorflow和numpy,使用numpy创建 x 和 y 的数据。另外,由于tensorflow中大部分的数据都是float32类型,所以这里使用numpy创建float32类型的数据。
import tensorflow as tf

import numpy as np

# create data

x_data=np.random.rand(100).astype(np.float32)

y_data=x_data*0.1+0.3

2.搭建模型
  用 tf.Variable 来创建描述 y 的参数. 我们可以把 y_data = x_data*0.1 + 0.3 想象成 y=Weights * x + biases, 然后神经网络也就是学着把 Weights 变成 0.1, biases 变成 0.3.

Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1]))

y = Weights*x_data + biases

3.计算误差
  将残差平方的均值作为误差

loss = tf.reduce_mean(tf.square(y-y_data))

4.传播误差
  反向传递误差的工作就交给optimizer了, 我们使用的误差传递方法是梯度下降法: Gradient Descent 让后我们使用 optimizer 来进行参数的更新.

optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
  1. 训练
      到目前为止, 我们只是建立了神经网络的结构, 还没有使用这个结构. 在使用这个结构之前, 我们必须先初始化所有之前定义的Variable, 所以这一步是很重要的!
# init = tf.initialize_all_variables() # tf 马上就要废弃这种写法
init = tf.global_variables_initializer()  # 替换成这样就好

  接着,我们再创建会话 Session. 我们用 Session 来执行 init 初始化步骤. 并且, 用 Session 来 run 每一次 training 的数据. 逐步提升神经网络的预测准确性.

sess = tf.Session()
sess.run(init)          # Very important

for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(Weights), sess.run(biases))

参考链接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/2-2-example2/

三、Session会话控制

  Session 是 Tensorflow 为了控制,和输出文件的执行的语句. 运行 session.run() 可以获得你要得知的运算结果, 或者是你所要运算的部分。
  先建立两个矩阵m1和m2,计算它们的乘积product,然后在使用Session来激活product 并得到计算结果. 有两种形式使用会话控制 Session。

import tensorflow as tf

# create two matrices

m1= tf.constant([[3,3]])
m2= tf.constant([[2],
                       [2]])
product = tf.matmul(m1,m2)
# method 1
sess = tf.Session()
result = sess.run(product)
print(result)
sess.close()
# output: [[12]]

# method 2
with tf.Session() as sess:
    result2 = sess.run(product)
    print(result2)
# output: [[12]]

参考链接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/2-3-session/

四、Variable变量

  tensorflow中需要使用tensorflow.Variable来定义变量

mport tensorflow as tf

state = tf.Variable(0, name='counter')

# 定义常量 one
one = tf.constant(1)

# 定义加法步骤 (注: 此步并没有直接计算)
new_value = tf.add(state, one)

# 将 State 更新成 new_value
update = tf.assign(state, new_value)

  如果在 Tensorflow 中设定了变量,那么初始化变量是最重要的!!所以定义了变量以后, 一定要定义tf.global_variables_initializer()。到这里变量还是没有被激活,需要再在 sess 里, sess.run(init) , 激活 init 这一步。

# 如果定义 Variable, 就一定要 initialize
# init = tf.initialize_all_variables() # tf 马上就要废弃这种写法
init = tf.global_variables_initializer()  # 替换成这样就好

# 使用 Session
with tf.Session() as sess:
    sess.run(init)
    for _ in range(3):
        sess.run(update)
        print(sess.run(state))

  注意:直接 print(state) 不起作用!!
  一定要把 sess 的指针指向 state 再进行 print 才能得到想要的结果!


参考链接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/2-4-variable/

五、Placeholder传入值

  placeholder 是 Tensorflow 中的占位符,暂时储存变量。
  Tensorflow 如果想要从外部传入data, 那就需要用到 tf.placeholder(), 然后以这种形式传输数据 sess.run(***, feed_dict={input: **})。

import tensorflow as tf

#在 Tensorflow 中需要定义 placeholder 的 type ,一般为 float32 形式
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)

# mul = multiply 是将input1和input2 做乘法运算,并输出为 output 
ouput = tf.multiply(input1, input2)

  接下来, 传值的工作交给了 sess.run() , 需要传入的值放在了feed_dict={} 并一一对应每一个 input. placeholder 与 feed_dict={} 是绑定在一起出现的。

with tf.Session() as sess:
    print(sess.run(ouput, feed_dict={input1: [7.], input2: [2.]}))
# output: [ 14.]

参考链接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/2-5-placeholde/#%E7%AE%80%E5%8D%95%E8%BF%90%E7%94%A8

六、激励函数

  激励函数运行时激活神经网络中某一部分神经元,将激活信息向后传入下一层的神经系统。激励函数的实质是非线性方程。 Tensorflow 的神经网络 里面处理较为复杂的问题时都会需要运用激励函数 activation function 。


参考链接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/2-6-activation/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352