如何巧用 Flink+Clickhouse 构建高性能实时数仓?

Flink 和 ClickHouse 都是用于构建实时数据仓库的优秀工具。Flink 是一个用于流处理的开源框架,而 ClickHouse 则是一个用于实时数据仓库的高性能列存储数据库。Flink 是 ClickHouse 的最佳搭档,为什么这么说呢?

实时数仓

ClickHouse 是一个用于联机分析 (OLAP) 的列式数据库管理系统(DBMS),它采用了列式存储、数据压缩、多核并行、向量引擎、分布式处理等技术,性能遥遥领先竞品。

1 亿条数据量级下,ClickHouse 与多种常见数据处理系统的查询速度对比图(数字越小代表耗时越短,性能越好),可以看到 ClickHouse 的性能数据遥遥领先。

ClickHouse 的数据分析能力如此高效,它还是有自己不擅长的地方:

不适合大量单条数据的写请求,因为写入过快时后台合并不过来,会报 Too many parts 等错误;不适合频繁的数据更新和删除操作,因为变更数据的聚合处理需要时间,短期内可能出现数据不准的现象;不擅长做多张表的关联(尤其是不同数据库引擎的源表之间 JOIN);生态支持弱,不适合多种不同数据源(特别是流式数据源)的接入;

而这些 ClickHouse 不擅长做的事情,刚好是 Flink 最适合的领域:

Flink 流处理模型,天然适合处理大量单条的流数据,吞吐量高,延迟低;

Flink 的流 - 动态表映射模型(如下图,来自 Flink 官网文档),可以很好地应对频繁更新和删除等记录。还可以通过 Mini-Batch、Window 等优化手段,极大地降低下游 ClickHouse 的处理压力;

Flink 支持多种流和流的 JOIN,还支持流和维度表的 JOIN 操作。借助强大的状态管理能力,可以做到精确的关联语义;

Flink 的生态支持很丰富,常见的各类系统基本都有 Connector;而且通过标准化 Source 和 Sink API,也可以轻松实现自己的 Connector。


由于开源版 Flink 的应用开发、调优、监控、运维较为繁琐,飞轮科技为了能够解决这些痛点,推出了 SelectDB 产品,SelectDB 是基于 Apache Doris 构建的实时数仓, 支持大规模实时数据上的极速查询分析。

Apache Doris 1.1 版本发布,该版本是全面向量化引擎支持,拥有内存统计和限制机制,相较Palo稳定性大幅提升,性能提升3-5倍;500+优化和修复:ZSTD压缩算法、Lateral,View语法及 TableFunction 表函数等;

Apache Doris 1.12 版本,该版本算子全面优化,宽表性能领先;Clickbench 全球性能第一,领先 Clickhouse;新主键模型(MoW Uniquekey),聚合性能提升5-10倍;嵌套数据类型: Array,JSON;初步完备的LakeHouse,性能比presto快3-5倍;轻量 Schema Change;

2023 年 7 月,Apache Doris 2.0 版本发布 ,该版本复杂查询盲测性能提升近 10倍:

全新的查询优化器,pipeline 执行引擎;

倒排索引,相比 ElasticSearch 10倍性价比的日志存储分析方案;

完善的 Lakehouse (Hive,Iceberg,Hudi,JDBC RDMBS) 和性能提升;

高并发数据服务支持,点查性能单机数万,线性可扩展;

MoW Unique Key 稳定支持大批量导入,支持部分列更新,完善的 DML;

资源弹性:冷热数据分层 + 弹性计算节点;

众多企业级特性:跨级群复制 CCR、负载管理和排队、万表库、K8S 对接;

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,692评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,482评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,995评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,223评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,245评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,208评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,091评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,929评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,346评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,570评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,739评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,437评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,037评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,677评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,833评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,760评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,647评论 2 354

推荐阅读更多精彩内容