Python数据分析(4)决策树模型

前言

  • 蛋肥使用员工离职数据集(包含14999个样本以及10个特征),通过现有员工是否离职的数据,建立决策树模型预测有可能离职的员工,最后尝试对模型进行评估与调优。

准备

时间:2021/06/30
系统环境:Windows 10
所用工具:Jupyter Notebook\Python 3.0
涉及的库:pandas\train_test_split\DecisionTreeClassifier\accuracy_score\roc_curve\matplotlib.pyplot\roc_auc_score\export_graphviz\graphviz\os\GridSearchCV

搭建决策树模型

参考资料
阿里云天池-员工离职数据

#读取数据集
import pandas as pd
df=pd.read_csv(r"C:\Users\Archer\Desktop\HR_comma_sep.csv")
#将sales、salary转化为数值
df=df.replace({"salary":{"low":1,"medium":2,"high":3},
               "sales":{"accounting":1,"hr":2,"IT":3,"management":4,"marketing":5,
                        "product_mng":6,"RandD":7,"sales":8,"support":9,"technical":10}})

#选取自变量、因变量
X=df.drop(columns="left")
Y=df["left"]

#划分训练集、测试集,测试集占20%
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=1)

#搭建决策树模型
from sklearn.tree import DecisionTreeClassifier
model=DecisionTreeClassifier(max_depth=3,random_state=1)
model.fit(X_train,Y_train)

获取预测准确度

蛋肥想法:通过测试集数据,检验预测准确度,测得准确度为95.47%。

#预测结果评分
from sklearn.metrics import accuracy_score
Y_pred=model.predict(X_test)
score=accuracy_score(Y_pred,Y_test)
print(str(score))

获取预测概率

#预测概率
Y_pred_=model.predict_proba(X_test)
data=pd.DataFrame(Y_pred_,columns=["不离职概率","离职概率"])

模型评估-ROC曲线

蛋肥想法:通过绘制ROC曲线,得出AUC值为0.966,表明预测效果不错。

#获取不同阈值下的命中率(TPR)和假警报率(FPR)
from sklearn.metrics import roc_curve
fpr,tpr,thres=roc_curve(Y_test,Y_pred_[:,1])

#绘制ROC曲线
import matplotlib.pyplot as plt
plt.plot(fpr,tpr)
plt.savefig(r"C:\Users\Archer\Desktop\my_fig.png",dpi=500)
plt.show

#获取模型AUC值
from sklearn.metrics import roc_auc_score
auc=roc_auc_score(Y_test,Y_pred_[:,1])
ROC曲线

特征重要性评估

蛋肥想法:特征重要性最高的是“satisfaction_level”,而“salary”在该模型中的特征重要性为0,并不符合实际(钱可太重要了~),应该是因为数据处理时单纯将工资分为“高”“中”“低”3个档次,使得该特征变量在决策树模型中发挥的作用较小。

#获取特征重要性
features=X.columns
imp=model.feature_importances_
imp_data=pd.DataFrame()
imp_data["特征名称"]=features
imp_data["特征重要性"]=imp
imp_data.sort_values("特征重要性",ascending=False)

决策树模型可视化

#决策树模型可视化
from sklearn.tree import export_graphviz
import graphviz
import os
os.environ["PATH"]=os.pathsep+r"C:\Program Files\Graphviz\bin"
dot_data=export_graphviz(model,out_file=None,class_names=["0","1"])
graph=graphviz.Source(dot_data)
graph.render(r"C:\Users\Archer\Desktop\result")

参数调优-GridSearch网格搜索

蛋肥想法:GridSearch网格搜索可以进行单参数和多参数调优,蛋肥这里以max_depth参数来练习调优,得出'max_depth': 7时,AUC更好为0.985。

#单参数调优,cv=5为5折交叉验证
from sklearn.model_selection import GridSearchCV
parameters={"max_depth":[1,3,5,7,9,11]}
model=DecisionTreeClassifier()
grid_search=GridSearchCV(model,parameters,scoring="roc_auc",cv=5)

#输出参数的最优值
grid_search.fit(X_train,Y_train)
grid_search.best_params_

总结

  • 作为机器学习的经典算法模型,决策树模型具有独特的优势,如对异常值不敏感、可解释性强等,也有一些缺点,如结果不稳定、容易造成过拟合等。
  • 决策树模型是很多重要集成模型的基础。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容