Stefan Pochmann 的上帝之手(3)从前序与中序遍历序列构造二叉树

105. 从前序与中序遍历序列构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出

  • 前序遍历 preorder = [3,9,20,15,7]
  • 中序遍历 inorder = [9,3,15,20,7]

返回如下的二叉树:

    3
   / \
  9  20
    /  \
   15   7
解题思路(乐扣官网)

方法一:递归(9~13行)

思路
对于任意一颗树而言,前序遍历的形式总是

[ 根节点, [左子树的前序遍历结果], [右子树的前序遍历结果] ]

中序遍历的形式总是

[ [左子树的中序遍历结果], 根节点, [右子树的中序遍历结果] ]

只要我们在中序遍历中定位到根节点,那么我们就可以分别知道左子树和右子树中的节点数目。由于同一颗子树的前序遍历和中序遍历的长度显然是相同的,因此我们就可以对应到前序遍历的结果中,对上述形式中的所有左右括号进行定位。

这样以来,我们就知道了左子树的前序遍历和中序遍历结果,以及右子树的前序遍历和中序遍历结果,我们就可以递归地对构造出左子树和右子树,再将这两颗子树接到根节点的左右位置。

def buildTree(self, preorder, inorder):
    if preorder == [] or inorder == []:
        return None
    r = preorder.pop(0)
    i = inorder.index(r)
    root = TreeNode(r)
    root.left = self.buildTree(preorder, inorder[:i])
    root.right = self.buildTree(preorder, inorder[i+1:])
    return root

改进
在中序遍历中对根节点进行定位时,一种简单的方法是直接扫描整个中序遍历的结果并找出根节点,但这样做的时间复杂度较高。【考虑最坏的情况,某棵树只有左孩子,一路向下,那么inorder正是preorder的反序列。每次找根结点都将花费O(n)时间,整体将花费O(n^2)时间。】我们可以考虑使用哈希映射(HashMap)来帮助我们快速地定位根节点。对于哈希映射中的每个键值对,键表示一个元素(节点的值),值表示其在中序遍历中的出现位置。在构造二叉树的过程之前,我们可以对中序遍历的列表进行一遍扫描,就可以构造出这个哈希映射。在此后构造二叉树的过程中,我们就只需要O(1)的时间对根节点进行定位了。

def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
    def myBuildTree(preorder_left: int, preorder_right: int, inorder_left: int, inorder_right: int):
        if preorder_left > preorder_right:
            return None
        
        # 前序遍历中的第一个节点就是根节点
        preorder_root = preorder_left
        # 在中序遍历中定位根节点
        inorder_root = index[preorder[preorder_root]]
        
        # 先把根节点建立出来
        root = TreeNode(preorder[preorder_root])
        # 得到左子树中的节点数目
        size_left_subtree = inorder_root - inorder_left
        # 递归地构造左子树,并连接到根节点
        # 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
        root.left = myBuildTree(preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1)
        # 递归地构造右子树,并连接到根节点
        # 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
        root.right = myBuildTree(preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right)
        return root
    
    n = len(preorder)
    # 构造哈希映射,帮助我们快速定位根节点
    index = {element: i for i, element in enumerate(inorder)}
    return myBuildTree(0, n - 1, 0, n - 1)

方法二:迭代(18行)

思路
对于前序遍历中的任意两个连续节点u和v,根据前序遍历的流程,我们可以知道u和v只有两种可能的关系:

  • v 是 u 的左儿子。这是因为在遍历到 u 之后,下一个遍历的节点就是 u 的左儿子,即 v;
  • u 没有左儿子,并且 v 是 u 的某个祖先节点(或者 u 本身)的右儿子。如果 u 没有左儿子,那么下一个遍历的节点就是 u 的右儿子。如果 u 没有右儿子,我们就会向上回溯,直到遇到第一个有右儿子(且 u 不在它的右儿子的子树中)的节点 u_{a},那么 v 就是 u_a的右儿子。

第二种关系看上去有些复杂。我们举一个例子来说明其正确性,并在例子中给出我们的迭代算法。

例子
我们以树

        3
       / \
      9  20
     /  /  \
    8  15   7
   / \
  5  10
 /
4

为例,它的前序遍历和中序遍历分别为

preorder = [3, 9, 8, 5, 4, 10, 20, 15, 7]
inorder = [4, 5, 8, 10, 9, 3, 15, 20, 7]

我们用一个栈 stack 来维护「当前节点的所有还没有考虑过右儿子的祖先节点」,栈顶就是当前节点。也就是说,只有在栈中的节点才可能连接一个新的右儿子。同时,我们用一个指针 index 指向中序遍历的某个位置,初始值为 0。index 对应的节点是「当前节点不断往左走达到的最终节点」,这也是符合中序遍历的,它的作用在下面的过程中会有所体现。

首先我们将根节点 3 入栈,再初始化 index 所指向的节点为 4,随后对于前序遍历中的每个节点,我们依此判断它是栈顶节点的左儿子,还是栈中某个节点的右儿子。

我们遍历 9。9 一定是栈顶节点 3 的左儿子。我们使用反证法,假设 9 是 3 的右儿子,那么 3 没有左儿子,index 应该恰好指向 3,但实际上为 4,因此产生了矛盾。所以我们将 9 作为 3 的左儿子,并将 9 入栈。

stack = [3, 9]
index -> inorder[0] = 4

我们遍历 8,5 和 4。同理可得它们都是上一个节点(栈顶节点)的左儿子,所以它们会依次入栈。

stack = [3, 9, 8, 5, 4]
index -> inorder[0] = 4

我们遍历 10,这时情况就不一样了。我们发现 index 恰好指向当前的栈顶节点 4,也就是说 4 没有左儿子,那么 10 必须为栈中某个节点的右儿子。那么如何找到这个节点呢?栈中的节点的顺序和它们在前序遍历中出现的顺序是一致的,而且每一个节点的右儿子都还没有被遍历过,那么这些节点的顺序和它们在中序遍历中出现的顺序一定是相反的。

这是因为栈中的任意两个相邻的节点,前者都是后者的某个祖先。并且我们知道,栈中的任意一个节点的右儿子还没有被遍历过,说明后者一定是前者左儿子的子树中的节点,那么后者就先于前者出现在中序遍历中。

因此我们可以把 index 不断向右移动,并与栈顶节点进行比较。如果 index 对应的元素恰好等于栈顶节点,那么说明我们在中序遍历中找到了栈顶节点,所以将 index 增加 1 并弹出栈顶节点,直到 index 对应的元素不等于栈顶节点。按照这样的过程,我们弹出的最后一个节点 x 就是 10 的双亲节点,这是因为 10 出现在了 x 与 x 在栈中的下一个节点的中序遍历之间,因此 10 就是 x 的右儿子。

回到我们的例子,我们会依次从栈顶弹出 4,5 和 8,并且将 index 向右移动了三次。我们将 10 作为最后弹出的节点 8 的右儿子,并将 10 入栈。

stack = [3, 9, 10]
index -> inorder[3] = 10

我们遍历 20。同理,index 恰好指向当前栈顶节点 10,那么我们会依次从栈顶弹出 10,9 和 3,并且将 index 向右移动了三次。我们将 20 作为最后弹出的节点 3 的右儿子,并将 20 入栈。

stack = [20]
index -> inorder[6] = 15

我们遍历 15,将 15 作为栈顶节点 20 的左儿子,并将 15 入栈。

stack = [20, 15]
index -> inorder[6] = 15

我们遍历 7。index 恰好指向当前栈顶节点 15,那么我们会依次从栈顶弹出 15 和 20,并且将 index 向右移动了两次。我们将 7 作为最后弹出的节点 20 的右儿子,并将 7 入栈。

stack = [7]
index -> inorder[8] = 7

此时遍历结束,我们就构造出了正确的二叉树。

算法

我们归纳出上述例子中的算法流程:

我们用一个栈和一个指针辅助进行二叉树的构造。
初始时栈中存放了根节点(前序遍历的第一个节点),指针指向中序遍历的第一个节点;
依次枚举前序遍历中除了第一个节点以外的每个节点。
如果 index 恰好指向栈顶节点,那么我们不断地弹出栈顶节点并向右移动 index,
并将当前节点作为最后一个弹出的节点的右儿子;
如果 index 和栈顶节点不同,我们将当前节点作为栈顶节点的左儿子;
无论是哪一种情况,最后都将当前的节点入栈。
最后得到的二叉树即为答案。

def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
    if not preorder:
        return None

    root = TreeNode(preorder[0])
    stack = [root]
    inorderIndex = 0
    for i in range(1, len(preorder)):
        preorderVal = preorder[i]
        node = stack[-1]
        if node.val != inorder[inorderIndex]:
            node.left = TreeNode(preorderVal)
            stack.append(node.left)
        else:
            while stack and stack[-1].val == inorder[inorderIndex]:
                node = stack.pop()
                inorderIndex += 1
            node.right = TreeNode(preorderVal)
            stack.append(node.right)

    return root

上帝之手(8~11行)

思路
与迭代法类似,也可以认为是DFS。
最短:

def buildTree(self, preorder, inorder):
    def build(stop):
        if inorder and inorder[0] != stop:
            root = TreeNode(preorder.pop(0))
            root.left = build(root.val)
            inorder.pop(0)
            root.right = build(stop)
            return root
    return build(None)

这里的preoder[0]与迭代法的index相同,stack用递归调用代替。
加速版:

def buildTree(self, preorder, inorder):
    def build(stop):
        if inorder and inorder[-1] != stop:
            root = TreeNode(preorder.pop())
            root.left = build(root.val)
            inorder.pop()
            root.right = build(stop)
            return root
    preorder.reverse()
    inorder.reverse()
    return build(None)

思路相同。利用list类型的pop只需O(1)时间的特点。
如果在开始时inorder增加None,则无须每次判断inorder是否为空。

# 改进版
def buildTree(self, preorder, inorder):
    def build(stop):
        if inorder[-1] != stop:
            root = TreeNode(preorder.pop())
            root.left = build(root.val)
            inorder.pop()
            root.right = build(stop)
            return root
    inorder.append(None)
    preorder.reverse()
    inorder.reverse()
    return build(None)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342