Python数据结构:数据框

前一篇文章提到了序列,可以理解为Excel里没有列名的一列数据,那么Excel里的由行列组成的表数据是如何对应到Python中的呢?就是今天要说的数据框:DataFrame

它是由一组数据和一对索引(行索引和列索引)组成的二维数据结构,可以看成Excel里的表格,与Series不同的是,DataFrame可以有多行/列数据。

1.建

首先要导入pandas模块,简写为pd。

In [1]:import pandas as pd

从列表中创建DataFrame

# 从列表中创建
list1 = [2,5,8,10]
df_l = pd.DataFrame(list1)
df_l

结果:


image

这里传入的是一个单一的列表,得到的是带有行列索引的一列数据,行索引用index表示,就是这里最前面竖着的那一列[0,1,2,3],相当于Excel里的第一列,列索引用columns表示,相当于Excel里的第一行,由于没有指定索引,因此都是默认从0开始递增的索引,这里横排第一行就是列索引,除去行列索引,中间的区域为values:值区域

image

从字典中创建

# 从字典中创建
dict1 = {"name":["Tony","Nancy","Judy","Cindy"],
        "age":[16,17,18,15],
        "sex":["male","female","female","female"]}
df_d = pd.DataFrame(dict1)
df_d

结果:


image

从字典中创建DataFrame,每个键就默认为columns。

从嵌套列表中创建

嵌套列表顾名思义,就是列表中还有列表,这种方式也可以创建数据框,同字典不同的是,字典创建的数据框键值对是一列一列的,嵌套列表创建的数据框是一行一行的。

# 嵌套列表创建
list2 = [["Jane",15,101],["David",18,103],["Peter",16,102]]
df1 = pd.DataFrame(list2)
df1

结果:


image

以上创建数据框都没有指定索引,下面我们来指定行列索引,columns指定列索引,index指定行索引。

# 指定行列索引
list2 = [["Jane",15,101],["David",18,103],["Peter",16,102]]
df1 = pd.DataFrame(list2,index = [1,2,3],columns = ["name","age","num"])
df1

结果:


image

2.查

查是指对数据框行/列数据的访问

2.1 选择行

Excel里没有专门的选择行的方法,就是直接用鼠标选择。在Pandas里要选择一行或几行数据,可以用lociloc方法,区别在于,loc方法传入的是行所在索引的名称,而iloc方法传入的是行的绝对位置

选择一行

选择df1数据框的第二行,可以用df1.loc[2],这里的2是第二行对应的行索引的名称。

# 访问df1第二行
df1.loc[2]

结果:


image

若用iloc方法,则这样写df1.iloc[1],别忘了一直说的索引是从0开始递增,所以第二行的绝对位置是1,iloc[1]表示取第二行的值。

df1.iloc[1]

结果同loc是一样的

选择几行

要选择几行,可以用iloc选择绝对位置并切片的方法。

# 选择前2行
df1.iloc[:2]

结果:


image

若选择的不是连续的几行,就不用切片,iloc方法传入选择行的绝对位置,loc传入索引名称,并用列表括起来。

# 选择第一行和第三行
df1.iloc[[0,2]]
df1.loc[[1,3]]

结果:


image.png

2.2 选择列

在Excel里选择列也是鼠标直接操作,除非是进行条件筛选,这个就是后话了,pandas里选择列的方式很简单,直接按列名选择即可,在数据框后面用中括号加上要选择的列名,或者数据框后面.列名,二者任选。

数据框[列名]
数据框.列名

选择一列

df.列名 等价于 Df[列名]

# 选择name列
df1["name"]
df1.name

结果:


image.png

注意到这样选择列得到的是序列而非数据框,如果想要得到数据框,要再加中括号。


image.png

选择几列

同行选择一样,选择几列的时候,要用中括号括起来。

# 选择1、3列
df1[["name","num"]]

结果:


image.png

2.2 行列同时选择定位

Loc定位

df.loc[行索引,列索引]可以定位一个数据.

# loc定位
df1.loc[[1,3],["name","age"]]

结果:


image.png

[1,3]是行索引,是一个列表值,表示获取1、3行标签所在的行,[“name”,”age”]是列索引,表示获取name,age列索引所在的列。

还可以用切片获取全部的行

# 获取name num列的全部行
df1.loc[:,["name","num"]]

结果:


image.png

左边的冒号表示获取全部的行,右边的列表值表示获取name列和num列。

同理获取全部列

# 获取2\3行全部列
df1.loc[[2,3],:]

结果:


image.png

:号不仅可以用来表示全部的行/列,还可以用在行/列中,进行切片。

# 获取1~3行全部列
df1.loc[1:3,:]

结果:


image.png

iloc定位

按照元素的绝对位置定位,行列索引都是从0开始。对比loc方法,loc里的1,3是行索引的名称,而iloc里的0,2是1、3这两个行索引所处的位置,同样地,name和age列的位置是0,1.

# loc定位
df1.loc[[1,3],["name","age"]]
# iloc
df1.iloc[[0,2],[0,1]] # iloc方法
image.png

iloc也可以切片。

# 获取name num列的全部行
df1.loc[:,["name","num"]]
df1.iloc[:,[0,2]] #iloc方法

结果:


image.png
# 获取2\3行全部列
df1.loc[[2,3],:]
df1.iloc[[1,2],:] #iloc方法

结果:


image.png
# 获取1~3行全部列
df1.loc[1:3,:]
df1.iloc[0:3,:] # iloc方法

结果:


image.png

Iloc切片是左闭右开的,也就是右区间时不包含的,0:3的意思是取第1行至第四行的值,不包括第四行,那实际上就只取到了第三行。Iloc切片的规则同Series切片是一样的。

3.增

3.1 插入行

同序列一样,如果想要在DataFrame里增加行记录,做法是建立一个新的DataFrame,然后将两个DataFrame纵向合并起来,同样用到append方法,

# 追加行
df2 = pd.DataFrame({"name":["Jane"],"age":[16],"sex":["female"]})
df_d.append(df2,ignore_index = True)

结果:


image.png

除了append方法可以进行表的纵向合并以达到插入行记录的目的外,还有concat方法。Concat是基于pandas的方法,用列表框起来,表示将两个数据框纵向拼接。这里我们可以看到索引还是原来数据框的索引,可以重置索引,设置ignore_index = True,就新生成一个索引了,append里也可以用。

pd.concat([df_d,df2],ignore_index = True)

结果是一样的:


image.png

3.2 插入列

直接对新增的列赋值,新增的列在数据框末尾。新增score列,用列表赋值,这里df1[“score”]不能替换成df1.score。

# 插入列
df1["score"] = [85,58,99]
df1

结果:


image.png

Insert方法,可以指定新增列的位置。

df1.insert(1,"score2",[77,78,79])
df1

结果:


image.png

insert方法的第一个参数是要插入列的位置,1表示将新列插入在第二列,第二个参数是列名,这里是score2,第三个参数是值。

3.删

3.1 删除行

Drop方法,index指定行,index = 1的意思是删除行索引名称为1的这一行。

# 删除行
df1.drop(index = 1)

结果:


image.png

还可以不写index,写axis = 0,表示按行删除。

df1.drop(1,axis = 0)

结果是一样的

3.2 删除列

对应删除行的操作,可以传入columns指定列

# 删除列
df1.drop(columns = "num")

结果:


image.png

也可以不传入columns,但要传入axis = 1参数。

df1.drop("num",axis = 1)

4.改

数据框修改实际上就是数据框中数值的替换,用replace方法,replace(A,B),表示把A替换成B。选中age列,将age列中15的值替换为25,输出df1,并设置inplace = True参数,表示立即更新。

# 一对一替换
df1["age"].replace(15,25,inplace = True)
df1

结果:


image.png

上个例子是将1个值替换成另一个值,那如果是要把18和16替换成26呢?把16和18用列表框起来,用26去替换他们。

# 多对一替换
df1["age"].replace([18,16],26,inplace = True)
df1

结果:


image.png

再比如要将num列的101,102,103分别对应替换成1001,1002和1003呢?这时字典就派上用场了。

# 多对多替换
df1["num"].replace({101:1001,102:1002,103:1003},inplace = True)
df1

结果:


image.png

猜你喜欢

Python数据结构:神奇的序列

你真的了解参数估计和假设检验吗?

高手都是怎样用图表的:用图表说话

@ 号主:可乐
@ 公众号/知乎专栏/头条/简书:可乐的数据分析之路
@ 加微信(data_cola)备注:进群,拉你进可乐的数据分析交流群,数据分析知识总结,不定期行业经验分享

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容