用简道云数据工厂搭建RFM销售管理分析模型

提示:图文较多,预计耗时6分钟

数字化时代几乎每个销售型企业都会搭建自己的CRM系统,用来管理自己的销售机会、销售客户、销售订单等业务流程及过程中产生的所有数据。尤其是零售企业,拥有大量的自有客户的销售数据。还有电商企业,他们拥有大量的顾客浏览数据、购买数据、订单数据,这些数据如果就这么静静的躺在系统里,那么它们将毫无价值可言。

如何利用这些数据去挖掘我们的客户,哪些是我们的利润贡献客户?

哪些是我们的忠实老客户?

哪些是我们的有待挖掘其购买力的老客户?

哪些我们需要重点关注的面临流失可能的高价值顾客?

哪些是我们的新增顾客、哪些是我们的低频购买老顾客?

要想回答这些问题,首先我们需要用看得见的数据分析指标来呈现它们。正如彼得·德鲁克所言“如果你不能衡量它,你就无法增长它”。让这些静止的数据动起来,变成有生命力的有价值的信息,帮助我们实现客户增长,实现客户价值最大化,增强客户粘性,RFM模型将会帮你实现这个目标!

RFM模型简介

在众多的用户价值分析模型中,RFM模型是被广泛被应用的。RFM模型是衡量客户价值和客户创利能力的重要工具和手段。该模型通过一个客户的近期购买行为、购买的总体频率以及花了多少钱三项指标来描述该客户的价值状况。

R(Recency):客户最近一次交易时间的间隔。R值越大,表示客户交易发生的日期越久,反之则表示客户交易发生的日期越近。R值越大,证明此客户沉睡时间越长,流失可能性越大。

F(Frequency):客户在最近一段时间内交易的次数。F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃。F值越大的顾客也就是我们的忠实顾客,是他们活跃了我们的店面流量。而F值小的顾客,他们跟我们的粘性不大,忠诚松散,随时可能面临被竞争对手抢走的风险。

M(Monetary):客户在最近一段时间内交易的金额。M值越大,表示客户价值越高,反之则表示客户价值越低。M值越大的顾客撑起了我们的业绩,如果再利用帕累托分布分析一下,也许会发现,正是这M值大的20%的顾客,撑起了我们业绩的80%的天空!

通过将这3个维度进行简单的高低取值划分,我们可以得到下面这个三维立体模型图,共计8种分类结果。

以上内容就是对于RFM模型知识的简单介绍,如果想要了解更多内容,大家可以自行查阅资料。

RFM模型设计障碍(干货预警

RFM模型就是要通过计算出R、F、M分别的取值,然后通过这个取值去获取所对应的客户类型。那么在这个过程中,我们需要克服哪些难题呢?

“今天”这个动态值的获取

在工厂计算字段里进行日期的差值计算

RFM的具体取值设定

根据RFM的取值获取文本分类值

之所以会有这几个难题困扰着我们,是因为工厂的计算字段目前只能处理数值,也只能得到数值结果!所以无法直接处理日期值,也无法获取文本值。所以我们想要解决这个问题的关键也是在此特性之上!


划重点:

因为数据工厂目前计算字段仅仅支持数值,所以我们所有非数值数据的处理,需要首先转化编码为数值,然后通过横向连接获取对应的非数值数据。这个过程也就是对非数值数据进行数值编码,然后再通过数值横向连接对它进行解码。

这是数据工厂处理非数值数据的核心思想!(针对目前功能而言2019.8.26)


模型搭建具体思路

1、分析数据的抽取


2、创建数字匹配符,进行与日期表的连接


3、连接日期表,获取日期的时间戳。(日期表是我们数据工厂关于日期的数据分析中频繁使用的基础表)

4、获取日期表的今日值(处理动态日期的关键所在)

5、增加一个连接后的节点(同一表来源的横向连接不能接连来2次)

6、通过我们前面设置的连接符,连接今天的动态值

7、计算日期差


8、分离R分析所涉及的数据,并进行最小日期差计算

9、抽取F跟M分析相关数据,并进行F跟M值的处理。

10、汇总整合R和FM得到的数据

11、根据自己设定的分类划分标准,获取F和M的高低(可以定为低为0、高为1)


12、根据我们编码的RFM分类表去和RFM的取值进行匹配,以获得RFM不同值组合的匹配分类

至此,我们的RFM分析模型就搭建完毕了。通过这个RFM分析,我们可以非常清晰的了解到我们的会员、顾客的购买行为分类。并针对不同分类,采用针对性的促销、激活、发展、提升等等方案。让你的顾客更加活跃、更加粘性、更加有价值!

最终效果就不展示给大家看了,因为我的在这基础上做了改变。下一篇文章给大家分享是我如何利用RFM这个模型来进行销售管理分类分析的。

一切皆是信息,万物源自比特!数字化必定会深刻革命我们的办公和生活!简道云,中小企业数字化之路的绝佳伴侣!

简道云注册网址:https://jiandaoyun.com/register_guide?utm_src=RPEzCKEs

本公众号将分享数字化的实践、学习、思考。也许涉及信息化系统设计、各种办公软件、数据分析、理论知识、实践案例…… 感谢你与我一同成长……

如果有关企业数字化的疑问、思考和讨论 或者 关于简道云的应用搭建、数据工厂、仪表盘等疑问咨询或者合作,欢迎与我联系。(关注公众号,可以找到我的联系方式)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容