《Maximum Classifier Discrepancy for Unsupervised Domain Adaptation》

About this paper

  • Title: Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
  • Authors:Kuniaki Saito, KoheiWatanabe, Yoshitaka Ushiku, and Tatsuya Harada
  • Topic: Domain Adaptation
  • From:CVPR 2018

Background

目前解决无监督领域自适应(Domain Adaptation)的一类主要方法是对抗学习,这类方法的思想主要来源于生成式对抗网络(GAN)。

这类方法主要包括三部分

  • 域分类器(Domain Classifier)
  • 标签分类器 (Label Predictor)
  • 特征生成器(Feature Generator)

域分类器来判断特征是来自源域(source domain)还是目标域(target domain)。
标签分类器通过训练预测源域数据额类别标签。
特征生成器(feature generator)有两个作用,一是通过训练正确的预测源域数据类别标签,二是尽量去欺骗域分类器,生成域分类器无法分辨的特征。

Motivation

作者提出这类基于对抗学习的方法有两个问题。

  1. 域分类器只是区分特征是来自源域还是目标域,没有考虑特定任务的类间决策边界。这样特征提取器会产生在决策边界附近的任意特征。
  2. 这类方法的目标是完全匹配两个不同域的特征分布。但是因为每个域都有自己特性,想做到这点是非常困难的。

下图左侧展示了之前的方法只是考虑对齐源域和目标域的整体分布,没有考虑目标域样本和特定任务分类边界的关系,导致目标域特征会出现在决策边界附近,造成错分类。

为了解决这些问题,作者提出了一种利用特定任务决策边界的方法来对齐源域和目标域的分布。

这个方法的主要思想是:最大化两个分类器输出的差异,来检测离源域比较远的目标域样本。特征生成器最小化这个差异来生成靠近源域的目标域特征。

Method

overall Idea

其实作者提出的方法也是一种对抗学习的方法,只是与之前的对抗学习方法不同的是,之前的方法是域分类器与特征生成器对抗。作者提出的方法是特定任务的分类器与特征生成器对抗。

作者提出的模型主要分有三个组成部分:两个与任务相关的分类器,还有一个特征生成器。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,646评论 18 139
  • d3 (核心部分)选择集d3.select - 从当前文档中选择一系列元素。d3.selectAll - 从当前文...
    谢大见阅读 3,439评论 1 4
  • 清晨,我醒来。 我听到卧室外亲人的声音,然后熟练地从枕头底下摸出手机。亮度即使被调到最低但它依然使我的眼睛有点不适...
    天火预兆阅读 138评论 0 0
  • 每次有青少年离家出走的新闻,媒体老说可怜天下父母心,现在的孩子真是不懂事,这样的言论真是正气凛然孝感动天咯。可是你...
    小径时光阅读 286评论 1 2
  • BY C.
    Cornight阅读 256评论 0 2