时序数据库在水电站领域的应用

大家好,上期经过了王宏志教授对数据库前沿领域的介绍,不知道小伙伴们是否对数据库领域有了更深的认识呢,本期让我们回归时序数据库,再来聊一聊时序数据库在水电站领域的应用。

本文仅代表个人观点,如有偏颇之处,还请海涵~

传统水电站监控系统迎挑战

在水电站的自动化控制过程中,电站的运行数据监控系统举足轻重。其后期为运行分析、趋势判断和事故处理等提供了有力的保障。水电站监控的数据具有采集频次高、并呈现时间序列排序等特点,使用传统的RDB(诸如MySQL、SQL Server、Oracle等)存储带来了诸多的问题。

首先,其存储成本高,写入吞吐低。大型水电站的测点非常之大,即使只是1万个测点,如果每秒采集一次,一天也要占用大约10 ~ 20 GB的磁盘存储空间。普通的磁盘阵列的容量很难满足上述海量数据的存储需求,而且关系型数据库对时序数据的压缩不理想,这也就造成伴随时间推移,其成本还将不断上升。此外,在传统方案下,海量数据写入耗时较长,难以满足千万级的写入需求。

其次,查询性能差。虽然会对关系型数据库进行分库分表、优化索引等技术操作,但随着存储数据的不断增长,其查询效率还是会显著降低,难以在秒级甚至毫秒级获取所需要的数据。同时,分表策略也会增加查询业务的复杂性。比如,如果按月分表,那么查询跨月数据需要通过多条SQL或联合查询才能获得所需结果。

时序数据库解决传统数据库瓶颈

针对水电厂监控系统中存储的数据大部分是时序数据的特点,基于时序数据库搭建水电站的监控系统成为了更好的选择。相比于关系型数据库,时序数据库在数据存储和查询方面,都有明显的性能优势。

时序数据库的高效压缩比可以节省大量的存储空间。这主要是因为其采用了列式存储的方法。其每列都存储了一组有序数据,将这些数据转换为单行“数组”形式的数据。然后针对其数据类型,使用特定压缩算法对每个数组进行单独压缩。

在查询方面,时序数据库的数据通常每秒或者每毫秒记录一次,这导致数据增长很快。而对于传统关系型数据库来说,由于大量地使用B+树进行索引,当数据量到达一定量级后,其写入性能就会出现明显的下降。而时序数据库可以进行自动分区,随着不断地数据写入,以时间戳来自动建立分区,将时序数据分区存放,保证每一个分区的索引维持在一个较小规模,从而维持住写入性能。查询时也可以快速定位到所需的数据分区,保证查询性能。

基于时序数据库提供更优服务

水电站监控系统的时序数据库主要用于曲线查询、报表查询等服务,根据相关的查询请求到时序数据库中查询相应的数据,生成相应的结果集返回。比如报表查询功能,主要是进行时序数据采样、输出,要实现可选间隔时序数据的平均值、最大值、最小值、均值等统计功能。同时也要求,通过配置界面配置所需要的测点统计功能,前端页面能够展示所需要的统计值。目前看来时序数据库提供的聚合查询函数完全能够满足水电站监控系统的所需要的统计功能,并且请求时间均在1秒以内。再比如,曲线查询功能,其要求系统可由时序数据库提供任意历史时间段的实时数据,供电站人员查询实时曲线,并要求可同时查询多个测点的曲线,以便进行分析比较。

好了各位小伙伴,本期我们就聊到这里,我们下次再见。


CnosDB简介

CnosDB是一款高性能、高易用性的开源分布式时序数据库,现已正式发布及全部开源。

欢迎关注我们的代码仓库,一键三连🙇🙇🙇:https://github.com/cnosdb/cnosdb

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,183评论 6 516
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,850评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,766评论 0 361
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,854评论 1 299
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,871评论 6 398
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,457评论 1 311
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,999评论 3 422
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,914评论 0 277
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,465评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,543评论 3 342
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,675评论 1 353
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,354评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,029评论 3 335
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,514评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,616评论 1 274
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,091评论 3 378
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,685评论 2 360

推荐阅读更多精彩内容