推荐系统学习资料收集

五分钟了解信息流产品和内容推荐算法

作者:也而

如何评估推荐质量

一个信息流产品,不会仅仅使用一种算法模型,通常会进行分流。占大比重的是经过验证的稳定模型,同时,会有多个占小比重的实验模型。
要评估这些实验算法模型的效果,采用的评测指标主要为以下三项:

  • 准确率:推荐列表里,多少比例的文章,是用户读过的
  • 召回率:推荐列表中,用户读过的文章,占用户阅读记录的比例
  • 覆盖率:推荐列表里的文章,占文章库总数的比例

    举例来说,文章总量为 100,用户实际看了 10 篇文章。最终实验模型推荐了20篇文章,用户看过的有 8 篇。准确率为 40%,召回率为 80%,覆盖率为 20%。
    除此以外,还需关注的核心业务指标:
  • UV 转化率:阅读 UV / 曝光 UV,反映多少比例的曝光用户转化为阅读用户
  • PV 转化率:阅读 PV / 曝光 PV,反映文章的平均转化情况
  • 人均篇数:阅读 PV / 阅读 UV,反映内容消费深度
  • 人均阅读时长:阅读总时长 / 阅读 UV,反映内容消费深度

    为什么要看多个指标,不能只关注点击率呢?是因为一味追求点击率,会鼓励「标题党」,导致用户文章阅读完成度降低,最终影响产品调性,造成深度用户流失。


深度丨从零搭建推荐体系

作者:JinkeyAI

千人一面

在产品上线初期,无论使用人数,还是内容,都相对较少,还未有足够数据支撑用户相关行为以及趋势,所以在此阶段,以收集用户行为、属性为最高目的,先达成最粗略的推荐行为,也就是判断哪些用户是疑似某一细化方向的目标用户,仅此即可。应该分为两个方向来考虑这个问题,新用户和老用户,对于新用户只能从环境熟悉和可能的物理属性进行判断,老用户可以全方位多维度判断,详见第二章,这里不多做叙述。

所以在当前阶段,主要目标就是收集用户行为,一切行为均不能遗漏,这也就是前文所说的,先围绕每个人建立一套粗略喜好标签模型,此阶段希望的是实时调整,根据用户使用频次和动作来决定,一定要快,因为刚刚上线,用户随时有可能离开。在用户随手点击内容以后回到首页的时候发现已经有较为感兴趣的内容了,那种好感度是不一样的。

千人十面
在这个阶段,已然有之前的用户行为的基础数据作为支持了,所以我们首先要做的就是将用户分组,将有相似喜好的用户找到,方法就是用最经典的向量算法里的夹角余弦,每个用户直接都要分别计算,不过好再现阶段用户量级不多,可以大量计算。计算依据也就是根据之前用户的相关操作行为,给用户打上的相关标签,按照标签相似度来给用户进行聚类。

所以在聚类完成后,一定会获得离别内某种同样的特征值,所以这也就完成了第二阶段的工作,每个类别内的用户进行相同的内容展示。

而且我们已经知道了喜爱不同项目之间的用户特征属性,这时候再进来的用户,我们也就可以相应的放在疑似库里了,等到收集到相应的新用户行为,也就能确定这个新用户的相关喜好方向了,成本会减小很多。所以在这个阶段,要尽量收集全,时间可以控制在2周左右,为下一步更加精准的推荐做准备。


浅谈推荐系统基础

作者:我偏笑_NSNirvana

推荐系统评测指标

  • 用户满意度
  • 预测准确度
  • 覆盖率
  • 多样性
  • 新颖性
  • 惊喜度
  • 信任度
  • 实时性
  • 健壮性
  • 商业目标


UGC社区推荐系统的几点思考

作者:Holy俊杰

每个人每天大脑能消耗的能量是有限的,我们可以称之为心智能量。所有需要大脑参与的活动都需要消耗心智能量。用户看一个视频消耗的心智能量是很小的,几乎不需要大脑参与。刷到美丽小姐姐跳舞,我会睁大眼睛;刷到主播撩拨笑点,我会咧嘴一笑;我需要做的就只是动动尊贵的手指,上翻、下翻、双击。全程几乎只需要下丘脑参与。

可是,阅读就不一样了。我要找个安静舒服的地方,全神贯注地理解文字背后作者想表达的意思,需要调动大量的脑神经元。如果是140字的短微博,或者知乎上抖机灵的回答,阅读起来还能一乐。如果是有复杂的辩证论述,或抽象概念的文章,读完一篇,明显感觉有些累。要消耗这么大的心智能量,我一天的阅读极限是五篇这样的文章,还是全网份额。那简书平台人均每天阅读量是多少呢?

那么,推荐系统的极限就是帮助平台无限逼近平台的极限。




持续更新,收集学习简书上科普推荐系统的文章。
关于简书首页算法推荐的反馈也欢迎和我或 @Holy俊杰 交流。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容