Description:
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, determine the total number of ways to decode it.
Example:
Given encoded message "12", it could be decoded as "AB" (1 2) or "L" (12).
The number of ways decoding "12" is 2.
Link:
https://leetcode.com/problems/decode-ways/description/
解题方法:
1: DFS不能AC
每次取两个字符,比如s[i - 1]和s[i]这两个字符,判断这两个字符能组成一种还是两种情况然后再对s.substr(i)和s.substr(i + 1)进行判断。
2: DP
假设dp[i]为以i为结尾的字符串解码方式数量的总和。
假设当前index为i,当s[i]有效的时候,则dp[i] += dp[i - 1]。当s[i - 1]s[i]组成的字符串有效时,dp[i] += dp[i - 2]。
实际上我们并不需要一个额外的数组来储存,只需要两个变量来储存dp[i - 1]和dp[i - 2]即可。
Tips:
Time Complexity:
1、O(2^n),DFS更适合求全部解码的结果,而不是计算有多少种解码的方法。
2、O(n)
完整代码:
//1、
int numDecodings(string s) {
return helper(s, 0);
}
int helper(string& s, int start) {
int len = s.size() - start;
if(len <= 0 || s[start] == '0')
return 0;
if(len == 1)
return 1;
int val = atoi(s.substr(start, 2).c_str());
if(len == 2) {
if(val > 26 && s[start + 1] == '0')
return 0;
else if(s[start + 1] == '0' || val > 26)
return 1;
else
return 2;
}
if(val > 26 && s[start + 1] == '0')
return 0;
if(s[start + 1] == '0')
return helper(s, start + 2);
if(val > 26)
return helper(s, start + 1);
return helper(s, start + 1) + helper(s, start + 2);
}
//2、
int numDecodings(string s) {
int len = s.size();
if(!len || s[0] == '0')
return 0;
if(len == 1)
return 1;
int dp1 = 1, dp2 = 1;
for(int i = 1; i < len; i++) {
int curr = 0;
if(isValid(s[i]))
curr += dp2;
if(isValid(s[i - 1], s[i]))
curr += dp1;
if(!curr)
return 0;
dp1 = dp2;
dp2 = curr;
}
return dp2;
}
bool isValid(char c) {
return c != '0';
}
bool isValid(char c1, char c2) {
if(c1 == '0')
return false;
string s;
s += c1;
s += c2;
int val = atoi(s.c_str());
if(val > 26)
return false;
return true;
}